Loading...
Search for: oxidation
0.014 seconds
Total 2320 records

    Application of numerical simulation to solid phase-microextraction for decreasing of extraction time of pyrene and phthalate esters on solid coatings

    , Article Journal of Chromatography A ; Volume 1673 , 2022 ; 00219673 (ISSN) Jafari, M ; Jamshidian, M ; Habibi, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Reynolds-Averaged Navier-Stokes (RANS) approach with the k-ε closure model is employed for the first time to simulate direct Solid-Phase Micro-Extraction (SPME) computationally. Simulations are performed by using COMSOL Multiphysics in order to examine methods to decrease the extraction time. Experiments are also conducted to support data obtained from the numerical framework. Di-n-Butyl Phthalate (DNBP) and etched steel wire are chosen as the analyte and the adsorbent, respectively. Stirring rate, fiber's location, stirrer magnet's size, and the method of sample rotation are examined to decrease the extraction time. In addition, the effects of adding a baffle to the vial and implementing a... 

    Simultaneous leaching of Cu, Al, and Ni from computer printed circuit boards using Penicillium simplicissimum

    , Article Resources, Conservation and Recycling ; Volume 177 , 2022 ; 09213449 (ISSN) Esmaeili, A ; Arshadi, M ; Yaghmaei, P.O. C. A. P. E. D. S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    A short lifespan and increased consumption patterns make e-waste the world's fastest-growing waste stream. Computers are one of the most significant parts of e-waste. Recycling of e-waste has been introduced as the main solution to deal with environmental problems and to save natural mines. This research aims to investigate the bioleaching of Cu, Ni, and Al from computer printed circuit boards (CPCBs) using Penicillium simplicissimum. The adaptation phase began at 1 g/l CPCBs powder with 107 spores and final pulp density was reached at 30 g/l. The most effective parameters including pulp density, initial pH, and the sucrose concentration were optimized to achieve maximum simultaneous... 

    Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 7, Issue 1 , Feb , 2011 , Pages 22-39 ; 15499634 (ISSN) Simchi, A ; Tamjid, E ; Pishbin, F ; Boccaccini, A. R ; Sharif University of Technology
    Abstract
    This review covers the most recent developments of inorganic and organic-inorganic composite coatings for orthopedic implants, providing the interface with living tissue and with potential for drug delivery to combat infections. Conventional systemic delivery of drugs is an inefficient procedure that may cause toxicity and may require a patient's hospitalization for monitoring. Local delivery of antibiotics and other bioactive molecules maximizes their effect where they are required, reduces potential systemic toxicity and increases timeliness and cost efficiency. In addition, local delivery has broad applications in combating infection-related diseases. Polymeric coatings may present some... 

    A novel needle trap sorbent based on carbon nanotube-sol-gel for microextraction of polycyclic aromatic hydrocarbons from aquatic media

    , Article Analytica Chimica Acta ; Volume 683, Issue 2 , January , 2011 , Pages 212-220 ; 00032670 (ISSN) Bagheri, H ; Ayazi, Z ; Aghakhani, A ; Sharif University of Technology
    2011
    Abstract
    A new type of composite material based on carbon nanotubes (CNTs) and sol-gel chemistry was prepared and used as sorbent for needle trap device (NTD). The synthesized composite was prepared in a way to disperse CNTs molecules in a sol-gel polymeric network. CNT/silica composites with different CNT doping levels were successfully prepared, and the extraction capability of each composite was evaluated. Effects of surfactant and the oxidation duration of CNTs on the extraction efficiency of synthesized composites were also investigated. The applicability of the synthesized sorbent was examined by developing a method based on needle trap extraction (NTE) and gas chromatography mass spectrometry... 

    Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid

    , Article Journal of Hazardous Materials ; Volume 172, Issue 2-3 , 2009 , Pages 1573-1578 ; 03043894 (ISSN) Ghasemi, S ; Rahimnejad, S ; Setayesh, S. R ; Rohani, S ; Gholami, M. R ; Sharif University of Technology
    Abstract
    TiO2 and transition metal (Cr, Mn, Fe, Co, Ni, Cu, and Zn) doped TiO2 nanoparticles were synthesized by the sol-gel method using 2-hydroxylethylammonium formate as an ionic liquid. All the prepared samples were calcined at 500 °C and characterized by X-ray diffraction (XRD), BET surface area determination, energy dispersive X-ray (EDX) analysis, diffuse reflectance spectroscopy (DRS), and Fourier transformed infrared (FT-IR) techniques. The studies revealed that transition metal (TM) doped nanoparticles have smaller crystalline size and higher surface area than pure TiO2. Dopant ions in the TiO2 structure caused significant absorption shift into the visible region. The results of... 

    A core–shell titanium dioxide polyaniline nanocomposite for the needle-trap extraction of volatile organic compounds in urine samples

    , Article Journal of Separation Science ; Volume 40, Issue 9 , 2017 , Pages 1985-1992 ; 16159306 (ISSN) Banihashemi, S ; Bagheri, H ; Sharif University of Technology
    Wiley-VCH Verlag  2017
    Abstract
    We synthesized a titanium dioxide–polyaniline core–shell nanocomposite and implemented it as an efficient sorbent for the needle-trap extraction of some volatile organic compounds from urine samples. Polyaniline was synthesized, in the form of the emeraldine base, dissolved in dimethyl acetamide followed by diluting with water at pH 2.8, using the interfacial polymerization method. The TiO2 nanoparticles were encapsulated inside the conducting polymer shell, by adapting the in situ dispersing approach. The surface characteristics of the nanocomposite were investigated by Fourier transform infrared spectrometry, scanning electron microscopy, and transmission electron microscopy. After... 

    Voltammetric studies of sumatriptan on the surface of pyrolytic graphite electrode modified with multi-walled carbon nanotubes decorated with silver nanoparticles

    , Article Talanta ; Volume 80, Issue 1 , 2009 , Pages 31-38 ; 00399140 (ISSN) Ghalkhani, M ; Shahrokhian, S ; Ghorbani Bidkorbeh, F ; Sharif University of Technology
    2009
    Abstract
    Multi-walled carbon nanotube decorated with silver nanoparticles (AgNPs-MWCNT) is used as an effective strategy for modification of the surface of pyrolytic graphite electrode (PGE). This modification procedure improved colloidal dispersion of the decorated MWCNTs in water, affording uniform and stable thin films for altering the surface properties of the working electrode. Robust electrode for sensing applications is obtained in a simple solvent evaporation process. The electrochemical behavior of sumatriptan (Sum) at the bare PGE and AgNPs-MWCNT modified PGE is investigated. The results indicate that the AgNPs-MWCNT modified PGE significantly enhanced the oxidation peak current of Sum. A... 

    Oncolytic paramyxoviruses-induced autophagy; A prudent weapon for cancer therapy

    , Article Journal of Biomedical Science ; Volume 26, Issue 1 , 2019 ; 10217770 (ISSN) Keshavarz, M ; Solaymani Mohammadi, F ; Miri, S. M ; Ghaemi, A ; Sharif University of Technology
    BioMed Central Ltd  2019
    Abstract
    Oncolytic virotherapy has currently emerged as a promising approach upon which scientists have been able to induce tumor-specific cell death in a broad spectrum of malignancies. Paramyxoviruses represent intrinsic oncolytic capability, which makes them excellent candidates to be widely used in oncolytic virotherapy. The mechanisms through which these viruses destroy the cancerous cells involve triggering the autophagic machinery and apoptosis in target cells. Interestingly, oncolytic paramyxoviruses have been found to induce autophagy and lead to tumor cells death rather than their survival. Indeed, the induction of autophagy has been revealed to enhance the immunogenicity of tumor cells via... 

    Examination of chondroitinase ABC I immobilization onto dextran-coated Fe3O4 nanoparticles and its in-vitro release

    , Article Journal of Biotechnology ; Volume 309 , 2020 , Pages 131-141 Askaripour, H ; Vossoughi, M ; Khajeh, K ; Alemzadeh, I ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Chondroitinase ABC I (cABC I) has received notable attention in treatment of spinal cord injuries and its application as therapeutics has been limited due to low thermal stability at physiological temperature. In this study, cABC I enzyme was immobilized on the dextran-coated Fe3O4 nanoparticles through physical adsorption to improve the thermal stability. The nanoparticles were characterized using XRD, SEM, VSM, and FTIR analyses. Response surface methodology and central composite design were employed to assess factors affecting the activity of immobilized cABC I. Experimental results showed that pH 6.3, temperature 24 °C, enzyme/support mass ratio 1.27, and incubation time 5.7 h were the... 

    Three-dimensional hybrid of iron–titanium mixed oxide/nitrogen-doped graphene on Ni foam as a superior electrocatalyst for oxygen evolution reaction

    , Article Journal of Colloid and Interface Science ; Volume 563 , 15 March , 2020 , Pages 241-251 Mousavi, D. S ; Asen, P ; Shahrokhian, S ; Irajizad, A ; Sharif University of Technology
    Academic Press Inc  2020
    Abstract
    Growing demands for clean and renewable energy technologies have sparked broad research on the development of highly efficient and stable non-noble metal electrocatalysts for oxygen evolution reaction (OER). In this regard, in the present work a three-dimensional Fe2TiO5/nitrogen-doped graphene (denoted as 3D FTO/NG) hybrid electrocatalyst was synthesized via a facile in-situ process using a hydrothermal method. Structural characterization of the prepared nanocomposite is performed by various techniques e.g. field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) analysis, Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy spectra (XPS),... 

    Point-of-use rapid detection of sars-cov-2: Nanotechnology-enabled solutions for the covid-19 pandemic

    , Article International Journal of Molecular Sciences ; Volume 21, Issue 14 , 2020 , Pages 1-23 Rabiee, N ; Bagherzadeh, M ; Ghasemi, A ; Zare, H ; Ahmadi, S ; Fatahi, Y ; Dinarvand, R ; Rabiee, M ; Ramakrishna, S ; Shokouhimehr, M ; Varma, R. S ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 pandemic that has been spreading around the world since December 2019. More than 10 million affected cases and more than half a million deaths have been reported so far, while no vaccine is yet available as a treatment. Considering the global healthcare urgency, several techniques, including whole genome sequencing and computed tomography imaging have been employed for diagnosing infected people. Considerable efforts are also directed at detecting and preventing different modes of community transmission. Among them is the rapid detection of virus presence on different surfaces with which people may come in... 

    Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy

    , Article Biomaterials ; Volume 232 , 2020 Rabiee, N ; Tavakkoli Yaraki, M ; Mokhtari Garakani, S ; Mokhtari Garakani, S ; Ahmadi, S ; Lajevardi, A ; Bagherzadeh, M ; Rabiee, M ; Tayebi, L ; Tahriri, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the “pigments of life”. They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of porphyrins that have been isolated or designed, but few of them have real clinical applications. Due to the hydrophobic properties of porphyrins, and their tendency to aggregate by stacking of the planar molecules they are difficult to work with in aqueous media. Therefore encapsulating them in nanoparticles (NPs) or attachment to various delivery vehicles have been used to improve delivery... 

    Immobilization of synthesized phenyl-enriched magnetic nanoparticles in a fabricated Y–Y shaped micro-channel containing microscaled hedges as a microextraction platform

    , Article Analytica Chimica Acta ; Volume 1136 , 2020 , Pages 51-61 Rezvani, O ; Hedeshi, M. H ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this survey, a reliable and applicable Y–Y shaped micro–channel in a microfluidic device was designed and manufactured. A number of micro–scaled hedges were precisely fabricated inside the micro–channel to facilitate the immobilization of synthesized core–shell Fe3O4@SiO2 magnetic nanoparticles (MNPs), functionalized by triethoxyphenylsilane (TEPS) by sol-gel technique. Both sample and reagents were introduced into the microfluidic device by a syringe pump to perform the extraction and desorption steps. The functionalized MNPs were characterized by transmission electron microscopy, X-ray diffraction spectroscopy and Fourier transform infrared spectroscopy. By adopting the strategy of... 

    An innovative, highly stable Ag/ZIF-67@GO nanocomposite with exceptional peroxymonosulfate (PMS) activation efficacy, for the destruction of chemical and microbiological contaminants under visible light

    , Article Journal of Hazardous Materials ; Volume 413 , 2021 ; 03043894 (ISSN) Kohantorabi, M ; Giannakis, S ; Moussavi, G ; Bensimon, M ; Gholami, M. R ; Pulgarin, C ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this work, Ag nanoparticles were loaded on ZIF-67 covered by graphene oxide (Ag/ZIF-67@GO), and its catalytic performance was studied for the heterogeneous activation of peroxymonosulfate (PMS) under visible-light. The catalyst surface morphology and structure were analyzed by FT-IR, XRD, XPS, DRS, FE-SEM, EDX, TEM, BET, ICP-AES and TGA analysis. The efficacy of PMS activation by the Ag/ZIF-67@GO under visible light was assessed by phenol degradation and E. coli inactivation. Phenol was completely degraded within 30 min by HO•, SO4•− and O2•− generated through the photocatalytic PMS activation. In addition, total E. coli inactivation was attained in 15 min that confirmed the highly... 

    CaZnO-based nanoghosts for the detection of ssDNA, pCRISPR and recombinant SARS-CoV-2 spike antigen and targeted delivery of doxorubicin

    , Article Chemosphere ; Volume 306 , 2022 ; 00456535 (ISSN) Rabiee, N ; Akhavan, O ; Fatahi, Y ; Ghadiri, A. M ; Kiani, M ; Makvandi, P ; Rabiee, M ; Nicknam, M. H ; Saeb, M. R ; Varma, R. S ; Ashrafizadeh, M ; Nazarzadeh Zare, E ; Sharifi, E ; Lima, E. C ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Overexpression of proteins/antigens and other gene-related sequences in the bodies could lead to significant mutations and refractory diseases. Detection and identification of assorted trace concentrations of such proteins/antigens and/or gene-related sequences remain challenging, affecting different pathogens and making viruses stronger. Correspondingly, coronavirus (SARS-CoV-2) mutations/alterations and spread could lead to overexpression of ssDNA and the related antigens in the population and brisk activity in gene-editing technologies in the treatment/detection may lead to the presence of pCRISPR in the blood. Therefore, the detection and evaluation of their trace concentrations are of... 

    Development of HAp/GO/Ag coating on 316 LVM implant for medical applications

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 126 , 2022 ; 17516161 (ISSN) Ahmadi, R ; Izanloo, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, antibacterial activity, biocompatibility, and corrosion resistance of 316 LVM implants were improved using the development of HAp/GO/Ag nanocomposite coatings by the dip-coating method. The XRD and FTIR results confirmed the synthesis of HAp/GO/Ag nanocomposites. HAp/Ag nanoparticles (68 nm) bound to epoxy, hydroxyl, and carboxyl functional groups on GO sheets (size of GO sheets varies from 255 to 1480 nm) by electrostatic interaction. FESEM images showed that HAp/GO/Ag coatings had higher density and fewer micro-cracks than pure HAp coatings. In addition, HAp/GO/Ag coatings showed optimized nano-hardness (4.5 GPa) and elasticity modulus (123 GPa). The results of... 

    Graphene-based nanomaterials in fighting the most challenging viruses and immunogenic disorders

    , Article ACS Biomaterials Science and Engineering ; Volume 8, Issue 1 , 2022 , Pages 54-81 ; 23739878 (ISSN) Ebrahimi, M ; Asadi, M ; Akhavan, O ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Viral diseases have long been among the biggest challenges for healthcare systems around the world. The recent Coronavirus Disease 2019 (COVID-19) pandemic is an example of how complicated the situation can get if we are not prepared to combat a viral outbreak in time, which brings up the need for quick and affordable biosensing platforms and vast knowledge of potential antiviral effects and drug/gene delivery opportunities. The same challenges have also existed for nonviral immunogenic disorders. Nanomedicine is considered a novel candidate for effectively overcoming these worldwide challenges. Among the versatile nanomaterials commonly used in biomedical applications, graphene has recently... 

    Reinforced polydiphenylamine nanocomposite for microextraction in packed syringe of various pesticides

    , Article Journal of Chromatography A ; Volume 1222 , January , 2012 , Pages 13-21 ; 00219673 (ISSN) Bagheri, H ; Ayazi, Z ; Es'haghi, A ; Aghakhani, A ; Sharif University of Technology
    2012
    Abstract
    Reinforced polydiphenylamine (PDPA) nanocomposite was synthesized by oxidation of diphenylamine in 4molL-1 sulfuric acid solution containing a fixed amount of carbon nanotubes (CNTs) in the presence of cetyltrimethylammonium bromide (CTAB). The surface characteristic of PDPA and PDPA/CNT nanocomposites was investigated using scanning electron microscopy (SEM). The prepared PDPA/CNT nanocomposite was used as an extraction medium for microextraction in packed syringe (MEPS) of selected pesticides from aquatic environment. The effect of CNT doping level and the presence of surfactant on the extraction capability of nanocomposite was investigated and it was revealed that when 4% (w/w) of CNT in... 

    Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus

    , Article Bioelectrochemistry ; Volume 123 , 2018 , Pages 70-76 ; 15675394 (ISSN) Ranjbar, S ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Since that pathogenic bacteria are major threats to human health, this paper describes the fabrication of an effective and durable sensing platform based on gold nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite (AuNPs/CNPs/CNFs) at the surface of glassy carbon electrode for sensitive and selective detection of Staphylococcus aureus (S. aureus). The AuNPs/CNPs/CNFs nanocomposite with the high surface area, excellent conductivity, and good biocompatibility was used for self-assembled of the thiolated specific S. aureus aptamer as a sensing element. The surface morphology of AuNPs/CNPs/CNFs nanocomposite was characterized with field emission scanning electron microscopy... 

    Unraveling cancer metastatic cascade using microfluidics-based technologies

    , Article Biophysical Reviews ; Volume 14, Issue 2 , 2022 , Pages 517-543 ; 18672450 (ISSN) Hakim, M ; Kermanshah, L ; Abouali, H ; Hashemi, H. M ; Yari, A ; Khorasheh, F ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Cancer has long been a leading cause of death. The primary tumor, however, is not the main cause of death in more than 90% of cases. It is the complex process of metastasis that makes cancer deadly. The invasion metastasis cascade is the multi-step biological process of cancer cell dissemination to distant organ sites and adaptation to the new microenvironment site. Unraveling the metastasis process can provide great insight into cancer death prevention or even treatment. Microfluidics is a promising platform, that provides a wide range of applications in metastasis-related investigations. Cell culture microfluidic technologies for in vitro modeling of cancer tissues with fluid flow and the...