Loading...
Search for: solar-cells
0.009 seconds
Total 369 records

    Deposition of Absorber layer of Copper Indium Gallium Di-Selenide with Solution based Method for Solar Cell Applications

    , M.Sc. Thesis Sharif University of Technology Salmani Mashkani, Farid (Author) ; Taghavinia, Nima (Supervisor) ; Dehghani, Mehdi (Supervisor)
    Abstract
    In recent years, the use of thin film solar cells has been widely considered due to the ability of their solution-based coatings. One of these is the chalcopytie solar cell copper indium gallium di-selenide (CIGS). The absorber layer of copper indium gallium diselenide was carried out by a spray pyrolysis method. then by using a chemical bath deposition, a buffer layer was fabricated to form the p-n junction. Subsequently, silver nanoparticles and zinc oxide alumina sputtering were used to form a transparent conductive film. with using the substrate Molybdenum and by optimizing the test conditions, such as temprature and deposition time to adjust thickness of layers, Cell with an... 

    Carbon-based Solar Cell with different Configuration of the Layers

    , M.Sc. Thesis Sharif University of Technology Motevalian, Saeme (Author) ; Mohammadi, Mohammad Reza (Supervisor) ; Seyyed Reyhani, Morteza (Supervisor)
    Abstract
    Last generation of solar cells which are organo-metal halide perovskite solar cells (PSCs) with power conversion efficiency over 20% are increasingly comparable to the silicon types, these PSCs are poorly stable under working environment. Carbon-based PSCs with lower cost and more stability seem a better choice for commercialization in future. In these PSCs TiO2 and NiO are working as electron and hole transporting materials, respectively. In addition, ZrO2 film between two mentioned layers works as a buffer layer to prevent direct contact. In this thesis, the initial powder, necessary for fabricating the buffer layer is synthesized at the first place. Then, since the printing method is a... 

    Preparation of Colloidal Chalcopyrite Nanoparticles Aimed for Device-Quality Thin Films Used in Solar Cell Applications

    , M.Sc. Thesis Sharif University of Technology Khosroshahi, Rouhollah (Author) ; Taghavinia, Nima (Supervisor) ; Bagherzadeh, Mojtaba (Supervisor)
    Abstract
    In this research, the technology of fabrication and deposition of nanoparticle inks from chalcogenide compounds and then use of them in the fabrication of CuInGaS2 and Perovskite thin-film solar cells have been considered. In the first step, the synthesis of CuInGaS2 family compounds with variable In / Ga ratio and also the change of the stoichiometric ratio of Cu component using oleylamine solvent is investigated. In addition to these compounds, the synthesis of CuSnS, CuBaSnS, and CuZnSnS nanoparticles is also investigated. The synthesized nanoparticles were analyzed by XRD, DLS, UV-Vis, ICP, PL, SEM, EDX, and TEM. Then, the stability of the ink made of CuInGaS2 nanoparticles in different... 

    Theoretical calculation of scattering efficiency of isotropic and anisotropic scattering particles employed in nanostructured solar cells

    , Article Journal of Optics (United Kingdom) ; Vol. 16, issue. 5 , 2014 ; ISSN: 20408978 Sasanpour, P ; Mohammadpour, R ; Sharif University of Technology
    Abstract
    Light scattering design in dye and quantum dot sensitized solar cells is one of the main concerns in enhancing their light harvesting efficiency, and also in improving their power conversion efficiency. Herein, we present a theoretical analysis to calculate the dependence of the light scattering efficiency in dye solar cells that have employed scattering agents with various sizes and morphologies incorporated in nanostructured photoanodes with different designs. Various isotropic and anisotropic nanostructures, including filled and hollow spheres, spherical voids, nanowires and hollow fibres in a size range of 100 nm to 900 nm, have been considered as scattering centres. The scattering... 

    Enhanced light harvesting with a reflective luminescent down-shifting layer for dye-sensitized solar cells

    , Article ACS Applied Materials and Interfaces ; Volume 5, Issue 12 , 2013 , Pages 5397-5402 ; 19448244 (ISSN) Hosseini, Z ; Huang, W. K ; Tsai, C. M ; Chen, T. M ; Taghavinia, N ; Diau, E. W. G ; Sharif University of Technology
    2013
    Abstract
    For a dye-sensitized solar cell with a near-infrared squaraine (SQ1) sensitizer, the photovoltaic performance was enhanced remarkably with a reflective luminescent down-shifting (R-LDS) layer to increase the light-harvesting efficiency at the wavelength region 400-550 nm where the SQ1 dye has weak absorption. Relative enhancements greater than 200% in IPCE near 500 nm and 40-54% in JSC were achieved with red phosphor CaAlSiN 3:Eu2+ as the LDS material, attaining 5.0 and 4.8% overall efficiencies of power conversion for the R-LDS layer coated on the counter electrode (front illumination) and working electrode (back illumination), respectively  

    Improved charge collection efficiency of hollow sphere/nanoparticle composite TiO 2 electrodes for solid state dye sensitized solar cells

    , Article Current Applied Physics ; Volume 13, Issue 2 , March , 2013 , Pages 371-376 ; 15671739 (ISSN) Sadoughi, G ; Mohammadpour, R ; Irajizad, A ; Taghavinia, N ; Dadgostar, S ; Samadpour, M ; Tajabadi, F ; Sharif University of Technology
    2013
    Abstract
    The photoanodes of solid state dye sensitized solar cells (ss-DSCs) embedded with different contents of TiO 2 hollow spheres (HSs) were prepared and the photovoltaic performances were systematically characterized. TiO 2 hollow spheres were synthesized by a facile sacrificial templating method, grounded and added in different ratios to TiO 2 nanoparticle (NP) paste, from which composite HS/NP electrodes were fabricated. The composite photoanodes include hollow spheres of 300-700 nm with enhanced light scattering characteristics in visible range which leads to improved light absorption in conventional thin film electrodes of ss-DSC. By optimizing the amount of HSs in the paste, 40% improvement... 

    Stable dye-sensitized solar cells based on a gel electrolyte with ethyl cellulose as the gelator

    , Article Applied Physics A: Materials Science and Processing ; Volume 120, Issue 3 , September , 2015 , Pages 869-874 ; 09478396 (ISSN) Vasei, M ; Tajabadi, F ; Jabbari, A ; Taghavinia, N ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    A simple gelating process is developed for the conventional acetonitrile-based electrolyte of dye solar cells, based on ethyl cellulose as the gelator. The electrolyte becomes quasi-solid-state upon addition of an ethanolic solution of ethyl cellulose to the conventional acetonitrile-based liquid electrolyte. The photovoltaic conversion efficiency with the new gel electrolyte is only slightly lower than with the liquid electrolyte, e.g., 6.5 % for liquid electrolyte versus 5.9 % for gel electrolyte with 5.8 wt% added ethyl cellulose. Electrolyte gelation has small effect on the ionic diffusion coefficient of iodide, and the devices are remarkably stable for at least 550 h under irradiation... 

    Efficient nanostructured biophotovoltaic cell based on bacteriorhodopsin as biophotosensitizer

    , Article ACS Sustainable Chemistry and Engineering ; Volume 3, Issue 5 , March , 2015 , Pages 809-813 ; 21680485 (ISSN) Mohammadpour, R ; Janfaza, S ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    Here, we report on utilizing a photoactive protein, bacteriorhodopsin (bR), as a light harvester in combination with TiO2 nanoparticles in biosensitized solar cell application. Experiments have been conducted to investigate the capability of surface adsorption of bR on nanoparticular TiO2photoanodes. Different pretreatment processes have been done to modify the interface of TiO2 nanoparticles and bR as a biophotosensitizer. Our results indicate the feasibility of efficient immobilization and photoinduced charge transfer of bR to the nanostructured TiO2 photoelectrode. Under illumination of simulated AM1.5 sunlight, the solar-light-to-electricity... 

    Effect of crystallinity and morphology of TiO2 nano-structures on TiO2:P3HT hybrid photovoltaic solar cells

    , Article Applied Solar Energy (English translation of Geliotekhnika) ; Volume 51, Issue 1 , January , 2015 , Pages 34-40 ; 0003701X (ISSN) Boroomandnia, A ; Kasaeian, A. B ; Nikfarjam, A ; Akbarzadeh, A ; Mohammadpour, R ; Sharif University of Technology
    Allerton Press Incorporation  2015
    Abstract
    A comparative study has been made of hybrid solar cells based on poly(3-hexylthiophene) (P3HT) and different nano-structures of TiO2. Electrospinning, which is a low cost production method for large area nanofibrous films, was employed to fabricate TiO2 nanofibers and spin coating method was employed to fabricate organic-inorganic hybrid solar cells based on P3HT and TiO2 nanostructures. The performance of the hybrid solar cells was analyzed for four density levels of the TiO2 nanostructure. It was found that higher densities of TiO2 leads to more interface area and generates excitons, so that the power conversion efficiency increases to... 

    Micron-scale rod-like scattering particles for light trapping in nanostructured thin film solar cells

    , Article RSC Advances ; Volume 5, Issue 105 , 2015 , Pages 86050-86055 ; 20462069 (ISSN) Malekshahi Byranvand, M ; Taghavinia, N ; Nemati Kharat, A ; Dabirian, A ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Spherical dielectric particles, nanofibers, and nanorods have been widely used as embedded scattering objects in nanostructured thin film solar cells. Here we propose micron-scale rod-like dielectric particles as a more effective alternative to the spherical ones for light trapping in thin film solar cells. The superior performance of these micro-rods is attributed to their larger scattering efficiency relative to the spherical particles as evidenced by full-wave optical calculations. Using a one-pot process, 1.7 μm-long bullet-shaped silica rods with 330 nm diameter are synthesized and their concentration in a N719-sensitized solar cell is optimized. A solar cell with an optimal... 

    Three-dimensional Graphene Electrode for Depleted-hetreojunction Quantum Dot Solar Cells

    , Article Procedia Engineering, 28 June 2015 through 3 July 2015 ; Volume 141 , 2016 , Pages 38-46 ; 18777058 (ISSN) Tavakoli, M. M ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Herein, a simple and novel method was used to synthesize a new structure of graphene which can be called hollow graphene. First, the ZnO-Graphene QDs synthesized by solution method and then ZnO QDs were dissolved from this structure using an acidic solution to obtain hollow structure of graphene. Afterward, this structure was used in PbS QDs solar cell in order to improve the transport of electron and decrease the recombination of the carriers. A power conversion efficiency of 5.3% was obtained using hollow graphene as a fast electron extraction layer due to the enhancement of EQE and current density. The improvement of PCE in this device was corresponded to efficient photosensitized... 

    Surface passivation of titanium dioxide via an electropolymerization method to improve the performance of dye-sensitized solar cells

    , Article RSC Advances ; Volume 6, Issue 15 , 2016 , Pages 12537-12543 ; 20462069 (ISSN) Mazloum Ardakani, M ; Khoshroo, A ; Taghavinia, N ; Hosseinzadeh, L ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    In dye-sensitized solar cells recombination reactions at the TiO2 photoanode with the electrolyte interface plays a critical role in cell efficiency. Recombination of injected electrons in the TiO2 with acceptors in the electrolyte usually occurs on uncovered areas of TiO2 surfaces. In this work, we report electropolymerization of polymer films on nanoporous TiO2 electrode surfaces using an ionic liquid as the growth medium. The choice of ionic liquid as the growth medium for this study is based on the insolubility of dye N719 in this electrolyte, thus avoiding dye molecule detachment from the TiO2 photoanode surface over the entire potential range investigated during the... 

    Interface engineering of perovskite solar cell using a reduced-graphene scaffold

    , Article Journal of Physical Chemistry C ; Volume 120, Issue 35 , Volume 120, Issue 35 , 2016 , Pages 19531-19536 ; 19327447 (ISSN) Tavakoli, M. M ; Tavakoli, R ; Hasanzadeh, S ; Mirfasih, M. H ; Sharif University of Technology
    American Chemical Society 
    Abstract
    Interface engineering of solar cell device is a prominent strategy to improve the device performance. Herein, we synthesize reduced-graphene scaffold (rGS) by using a new and simple chemical approach. In this regard, we synthesize a hollow structure of graphene and then fabricate a three-dimensional scaffold of graphene with a superior surface area using electrophoretic process. We employ this scaffold as an interface layer between the electron transfer and absorber layers in perovskite solar cell. The characterization tests and photovoltaic results show that rGS improves the carrier transportation, yielding a 27% improvement in device performance as compared to conventional device. Finally,... 

    A novel organic–inorganic hybrid tandem solar cell with inverted structure

    , Article Applied Physics A: Materials Science and Processing ; Volume 123, Issue 4 , 2017 ; 09478396 (ISSN) Bahrami, A ; Faez, R ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    A novel organic–inorganic hybrid tandem solar cell with inverted structure is proposed. This efficient double-junction hybrid tandem solar cell consists of a single-junction hydrogenated amorphous silicon (a-Si:H) subcell with n-i-p structure as front cell and a P3HT:PCBM organic subcell with inverted structure as back cell. In order to optimize the hybrid tandem cell, we have performed a simulation based on transfer matrix method. We have compared the characteristics of this novel structure with a conventional structure. As a result, a power conversion efficiency (PCE) of 6.1 and 24% improvement compared to the conventional hybrid tandem cell was achieved. We also discuss the high potential... 

    Photovoltaic performance improvement in vacuum-assisted meniscus printed triple-cation mixed-halide perovskite films by surfactant engineering

    , Article ACS Applied Energy Materials ; Volume 2, Issue 9 , 2019 , Pages 6209-6217 ; 25740962 (ISSN) Parvazian, E ; Abdollah Zadeh, A ; Dehghani, M ; Taghavinia, N ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Scalable coating methods have recently emerged as practical alternative deposition techniques to the conventional spin-coating despite their lower yielding power conversion efficiencies (PCEs). The most important barrier acting against the use of scalable deposition methods to get a highly absorbing (>95%) film with controlled morphology in the high crystallinity of perovskite particles is the impossibility of antisolvent dripping during the deposition. Here, we demonstrate the positive role of both the surfactant-engineering and the vacuum-annealing (<100 Pa) process in improving the device performance to overcome this limit. A detailed optimization of the vacuum-assisted meniscus printing... 

    Fabrication of perovskite solar cells based on vacuum-assisted linear meniscus printing of MAPbI3

    , Article Solar Energy Materials and Solar Cells ; Volume 191 , 2019 , Pages 148-156 ; 09270248 (ISSN) Parvazian, E ; Abdollah zadeh, A ; Akbari, H. R ; Taghavinia, N ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Scale-up deposition methods in perovskite solar cell research, are mostly used under humidity environment outside the glove-box. Also, the as-printed absorbing layer before the post-annealing process is always wet. Thus, controlling the morphology and crystallization of perovskite thin-films in up-scaled deposition systems is difficult and strongly investigated by the researchers. In this work, we introduce an anti-solvent-free meniscus printing method in which, the absorbing perovskite film with optimal performance is achieved. To this end, we check the printing parameters to get to the optimized film characteristics. Also, a vacuum chamber (<100 Pa) is used for 30 s to remove the solvent... 

    Simulation of Organic Solar Cells

    , M.Sc. Thesis Sharif University of Technology Bahrami, Ali (Author) ; Faez، Rahim (Supervisor)
    Abstract
    Solar cells are one of the most promising clean and readily available energy sources. Organic solar cells as a new generation of solar cells, have attracted strong attention in recent years, due to the advantages of flexibility, thinness, and simple manufacturing process. This work focuses on the electrical processes in organic solar cells and approaches for enhancing the efficiency of solar cell by employing two-dimensional drift-diffusion model. At the first step. We investigate the role of different parameters such as mobility (considering different recombination mechanisms), active layer thickness, light intensity, barrier injections and energetic disorder on the performance of single... 

    Surface modification of a hole transporting layer for an efficient perovskite solar cell with an enhanced fill factor and stability

    , Article Molecular Systems Design and Engineering ; Volume 3, Issue 5 , 2018 , Pages 717-722 ; 20589689 (ISSN) Tavakoli, M. M ; Tavakoli, R ; Prochowicz, D ; Yadav, P ; Saliba, M ; Sharif University of Technology
    Abstract
    The improvement of the quality of the hole transporting layer (HTL) plays a key role in the fabrication of highly efficient and stable perovskite solar cells (PSCs). Here, we used rubrene as a surface treatment agent on top of a spiro HTL. We found that rubrene can cover the pinholes of the spiro layer and provide an excellent contact layer for planar PSCs. Based on this modification, mobile gold ions from the metal electrode are prevented from diffusing through the HTL hindering the degradation of PSCs. The optimized device shows a maximum power conversion efficiency (PCE) of 19.87% and a 79% fill factor (FF), which are higher than the 17.98% PCE and 72% FF of the reference device. In... 

    Fabrication of Thin Layers Semiconductor Based on CTS

    , M.Sc. Thesis Sharif University of Technology Jalali Chamani, Hesam (Author) ; Mahdavi, Mohammad (Supervisor)
    Abstract
    Copper-based semiconductors have received a great deal of attention due to their high absorption coefficient, direct and adjustable energy gap with stoichiometry, low frequency and toxicity. Multicomponent nanocrystals such as CuInS2, Cu (In, Ga) (S, Se) 2, Cu2ZnSnS4 and Cu2SnS3 (CTS) have been successfully synthesized by colloidal synthesis and have shown application potentials such as energy conversion, photocatalyst, thermoelectric and biomedical. Among these, the CTS ternary semiconductor with p-type conduction is one of the most well-known compounds of group I-IV-VI, which consists of abundant and non-toxic elements. In this research, thin-film solar cells with FTO / TiO2 / In2S3 / CdS... 

    Mesoporous TiO2 microbead electrodes for cobalt-mediator-based dye-sensitized solar cells

    , Article Journal of Physical Chemistry C ; Vol. 118, issue. 30 , July , 2014 , p. 16472-16478 ; ISSN: 19327447 Pazoki, M ; Taghavinia, N ; Hagfeldt, A ; Boschloo, G ; Sharif University of Technology
    Abstract
    Light scattering, porosity, surface area, and morphology of TiO2 working electrode can affect the power conversion efficiency of dye -sensitized solar cells dramatically. Here mesoporous TiO2 microbeads were tested as working electrode in dye-sensitized solar cells based on cobalt tris-bipyridine electrolyte. Power conversion efficiencies up to 6.4% were obtained with D35 dye adsorbed onto the light-scattering microbeads. Electron transport, studied using small light perturbation methods, was found to be significantly faster in the microbead films than in standard mesoporous TiO 2 films. This was attributed to the favorable assembly of nanocrystals in the microbeads, which can increase the...