Loading...
Search for: solar-cells
0.009 seconds
Total 369 records

    Improving the performance of planar perovskite solar cell using NH4Cl treatment of SnO2 as electron transport layer

    , Article Surfaces and Interfaces ; 2021 ; 24680230 (ISSN) Keshtmand, R ; Zamani Meymian, M. R ; Taghavinia, N ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Here in this research, a modified interface between the electron transport layer (ETL) and the perovskite layer in a perovskite solar cell (PSC) is provided by adding the ammonium chloride (NH4Cl) to the tin oxide (SnO2) as the modified ETL of a planar structure as follows: fluorine-doped tin oxide (FTO)/NH4Cl-SnO2/Mixed cation perovskite/Copper indium disulfide (CIS)/Gold (Au). The effects of NH4Cl on ETL are investigated in different amounts from 0.003 to 0.02 M and the best results were obtained in the amount of 0.013 M. The best NH4Cl-SnO2 ETL could increase the power conversion efficiency (PCE) of fabricated planar PSC by 16.79% with open-circuit voltage (Voc) of 1.15 V and negligible... 

    Improving the performance of planar perovskite solar cell using NH4Cl treatment of SnO2 as electron transport layer

    , Article Surfaces and Interfaces ; Volume 28 , 2022 ; 24680230 (ISSN) Keshtmand, R ; Zamani Meymian, M. R ; Taghavinia, N ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Here in this research, a modified interface between the electron transport layer (ETL) and the perovskite layer in a perovskite solar cell (PSC) is provided by adding the ammonium chloride (NH4Cl) to the tin oxide (SnO2) as the modified ETL of a planar structure as follows: fluorine-doped tin oxide (FTO)/NH4Cl-SnO2/Mixed cation perovskite/Copper indium disulfide (CIS)/Gold (Au). The effects of NH4Cl on ETL are investigated in different amounts from 0.003 to 0.02 M and the best results were obtained in the amount of 0.013 M. The best NH4Cl-SnO2 ETL could increase the power conversion efficiency (PCE) of fabricated planar PSC by 16.79% with open-circuit voltage (Voc) of 1.15 V and negligible... 

    Thermal residual stresses in silicon thin film solar cells under operational cyclic thermal loading: A finite element analysis

    , Article Solar Energy ; Volume 135 , 2016 , Pages 366-373 ; 0038092X (ISSN) Namvar, A ; Dehghany, M ; Sohrabpour, S ; Naghdabadi, R ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In manufacturing amorphous silicon solar cells, thin films are deposited at high temperatures (200-400 °C) on a thick substrate using sputtering and plasma enhanced chemical vapor deposition (PECVD) methods. Since the thin films and substrate have different thermal expansion coefficients, cooling the system from deposition temperature to room temperature induces thermal residual stresses in both the films and substrate. In addition, these stresses, especially those having been induced in the amorphous silicon layer can change the carrier mobility and band gap energy of the silicon and consequently affect the solar cell efficiency. In this paper, a 2D finite element model is proposed to... 

    Printable Carbon Electrode for Perovskite & Thin Film Solar Cells

    , Ph.D. Dissertation Sharif University of Technology Mashhoun, Sara (Author) ; Taghavinia, Nima (Supervisor) ; Tajabadi, Fariba (Supervisor) ; Mohammadpour, Raheleh (Supervisor)
    Abstract
    Solar cells, as a part of photovoltaics (PV) industry, have a significant share in the renewable energy market. Perovskite solar cells (PSCs) and thin film solar cells (TFSCs) achieved 23% and 22% power conversion efficiencies (PCEs) respectively. However, the PV industry still faces challenges like “high manufacturing costs” and “stability”. Among the strategies to overcome these challenges are substitution of the costly materials with cheaper, more abundant ingredients along with utilizing inexpensive deposition methods like printing rather than vacuum-based methods such as evaporation and sputtering. Carbon materials attract more attention in the solar cell research community for their... 

    Synthesis and Characterization of ZnO for Electron Transport Layer in Perovskite and CIGS Solar Cells

    , M.Sc. Thesis Sharif University of Technology Rasti, Noushin (Author) ; Taghavinia, Nima (Supervisor) ; Dehghani, Mehdi (Supervisor)
    Abstract
    The purpose of this study is the fabrication and characterization of ZnO nano particles and the application of ZnO in solar cells. Therefore, firstly we fabricate the high stable solution of ZnO nano particles and then characterize ZnO nano particles. In addition, we study sulfurzation and selenization of zinc oxide thin films. We use ZnO nano particles for fabrication of transparent conductive films. Transparent conductive films have many applications such as touch panels, displays and solar cells. The most applicable transparent conductive electrode is indium tin oxide , which is the most expensive layer in solar cells. But silver nanowires has some challenges such as high surface... 

    Synthesis and Stability Improvement of Perovskite QDs for Optoelectronic Devices

    , M.Sc. Thesis Sharif University of Technology Hasanzadeh Azar, Mahdi (Author) ; Simchi, Abdol Reza (Supervisor)
    Abstract
    In the last years, perovskite QDs have emerged as the novel candidate due to their unique optical properties such as high-absorption coefficient, long-range charge transport, low exciton-binding energy, and etc. Nonetheless, poor stability of perovskite in ambient conditions made researchers to consider this issue. Recently, amoung various types of organic-inorganic perovskites, Formamidinium lead iodide has attracted tremendous attention due to its near IR absorption wavelength in addition to the higher stability compared to MAPbI3. In this work, FAPbI3 perovskite stability improvement was investigated by several methods under different conditions. In the first step, FAPbI3 QDs colloidal... 

    Anti-solvent-free Deposition of Perovskite Layers for Fabricating Module Scale Solar Cells

    , M.Sc. Thesis Sharif University of Technology Abdizadeh, Karim (Author) ; Nemati, Ali (Supervisor) ; Taghavinia, Nima (Supervisor)
    Abstract
    Perovskite solar cells with 25.5% efficiency and fast and cheap manufacturing process are among the most promising technologies in this field to replace silicon cells. Despite the challenges of stability and toxicity to these cells, their manufacturing technology has recently shifted to the development of large-scale manufacturing methods in module dimensions. In the present study, the fabrication of perovskite cells in large dimensions to achieve the perovskite module has been aimed and studied that to achieve this, the method of large-scale spraying and printing using the vacuum system was used to create cell-forming films and, consequently, to make the final cell and module. To... 

    Simply synthesized TiO2 nanorods as an effective scattering layer for quantum dot sensitized solar cells

    , Article Chinese Physics B ; Vol. 23, issue. 4 , 2014 Samadpour, M ; Zad, A. I ; Molaei, M ; Sharif University of Technology
    Abstract
    TiO2 nanorod layers are synthesized by simple chemical oxidation of Ti substrates. Diffuse reflectance spectroscopy measurements show effective light scattering properties originating from nanorods with length scales on the order of one micron. The films are sensitized with CdSe quantum dots (QDs) by successive ionic layer adsorption and reaction (SILAR) and integrated as a photoanode in quantum dot sensitized solar cells (QDSCs). Incorporating nanorods in photoanode structures provided 4- to 8-fold enhancement in light scattering, which leads to a high power conversion efficiency, 3.03% (Voc = 497 mV, Jsc = 11.32 mA/cm2, FF = 0.54), in optimized structures. High efficiency can be obtained... 

    Ab initio study of electronic effects in the ZnO/TiO2 core/shell interface: Application in dye sensitized solar cells

    , Article RSC Advances ; Vol. 4, issue. 1 , April , 2014 , p. 301-307 Pazoki, M ; Nafari, N ; Taghavinia, N ; Sharif University of Technology
    Abstract
    Core/shell structure of ZnO nanowires coated with a monolayer of TiO 2 is investigated using Density Functional Theory (DFT). The electronic states of the semiconductor is calculated and compared before and after coating of the TiO2 monolayer on a ZnO [101 0] surface. The effect of TiO2 coating induce surface states changes and shifts the conduction and valence band edges to higher energies. Our results, in qualitative agreement with the experimental work of Matt Law et al. (J. Phys. Chem. B, 110, 22652), show an increase in open circuit voltage and a decrease in short circuit current in ZnO/TiO2 core shell dye sensitized solar cells. Regarding the semiconductor density of states (DOS), TiO2... 

    Plasmonic fractals: Ultrabroadband light trapping in thin film solar cells by a Sierpinski nanocarpet

    , Article Optical and Quantum Electronics ; Vol. 46, issue. 6 , 2014 , pp. 751-757 ; ISSN: 03068919 Kazerooni, H ; Khavasi, A ; Sharif University of Technology
    Abstract
    Plasmonic Sierpinski nanocarpet as back structure for a thin film Si solar cell is investigated. We demonstrate that ultra-broadband light trapping can be obtained by placing square metallic nanoridges with Sierpinski pattern on the back contact of the thin film solar cell. The multiple-scale plasmonic fractal structure allows excitation of localized surface plasmons and surface plasmon polaritons in multiple wavelengths leading to obvious absorption enhancements in a wide frequency range. Full wave simulations show that 109 % increase of the short-circuit current density for a 200 nm thick solar cell, is achievable by the proposed fractal back structure. The amount of light absorbed in the... 

    Dielectric core-shells with enhanced scattering efficiency as back-reflectors in dye sensitized solar cells

    , Article RSC Advances ; Vol. 4, issue. 7 , Oct , 2014 , p. 3621-3626 Ghazyani, N ; Majles Ara M.H ; Tajabadi F ; Dabirian, A ; Mohammadpour, R ; Taghavinia, N ; Sharif University of Technology
    Abstract
    Particulate back-reflector films are conventionally used for the improvement of light harvesting in dye solar cells (DSC). The back-reflection of the films is directly related to the scattering efficiency of the individual particles. Inspired by the idea of multilayer optical thin films, here it is demonstrated theoretically and experimentally that putting a SiO2 shell around spherical rutile-TiO2 particles leads to improved light scattering by the particles. These dielectric core-shells not only enhance the overall diffuse reflection of the films, but they also cause a relative improvement in the red and near infrared regions. Back-reflector films of these core-shell particles employed in... 

    Effect of TiO2 nanofiber density on organic-inorganic based hybrid solar cells

    , Article International Journal of Engineering, Transactions A: Basics ; Vol. 27, issue. 7 , 2014 , p. 1133-1138 Boroumandnia, A ; Kasaeian, A. B ; Nikfarjam, A. R ; Mohammadpour, R ; Sharif University of Technology
    Abstract
    In this work, a comparative study of hybrid solar cells based on P3HT and TiO2 nanofibers was accomplished. Electrospinning, a low cost production method for large area nanofibrous films, was employed to fabricate the organic-inorganic hybrid solar cells based on poly (3-hexylthiophene) and TiO2 nanofibers. The performance of the hybrid solar cells was analyzed for four density levels of TiO2 nanofibers which resulted in the average power conversion efficiency of about 0.0134% under AM 1.5 simulated illuminations (100 mWcm-2). It is found that the higher densities of TiO2 lead to more interface area and generating exciton, so the power conversion efficiency will be increased till the active... 

    Synthesis of TiO2 hollow spheres using titanium tetraisopropoxide: Fabrication of high efficiency dye sensitized solar cells with photoanodes of different nanocrystalline TiO2 sub-layers

    , Article RSC Advances ; Vol. 4, issue. 101 , Oct , 2014 , p. 58064-58076 Marandi, M ; Feshki, S ; Naeimi Sani Sabet, M ; Anajafi, Z ; Taghavinia, N ; Sharif University of Technology
    Abstract
    In this research TiO2 hollow spheres with different diameters were prepared using titanium tetraisopropoxide (TTIP) as the TiO2 precursor. Carbon spheres with average sizes of 230, 325 and 450 nm were prepared as the templates by hydrothermal method. Then TiO2 was deposited on the surface of the carbon spheres through a liquid phase deposition (LPD) process. This two dimensional growth was performed in an appropriate concentration of TTIP and different LPD times. Finally the TiO2 hollow spheres were achieved for specific LPD times by burning the carbon templates. Two kinds of TiO2 nanocrystals with sizes around 20 nm were hydrothermally grown in acidic (pH = 1.5) and basic (pH = 10)... 

    Resonant-size spherical bottom scatterers for dye-sensitized solar cells

    , Article RSC Advances ; Volume 3, Issue 47 , 2013 , Pages 25417-25422 ; 20462069 (ISSN) Dabirian, A ; Taghavinia, N ; Sharif University of Technology
    2013
    Abstract
    We numerically evaluate the effect of a monolayer of resonant-size TiO 2 spheres on the performance of dye-sensitized solar cells (DSCs). This scattering layer is placed between the transparent conducting layer and the dye-sensitized mesoporous TiO2 layer. We carried out our numerical calculations by solving full-wave Maxwell equations in the entire DSC structure using the rigorous coupled-waves approach (RCWA). The layer of TiO2 spheres functions as a strong reflector, leading to strong confinement of the incident light within the absorbing layer of the DSC. The reflectance from this layer originates from coupling of light to the optical resonance modes of the TiO2 spheres. Comparing... 

    Monolithic quantum dot sensitized solar cells

    , Article Journal of Physics D: Applied Physics ; Volume 46, Issue 48 , December , 2013 ; 00223727 (ISSN) Samadpour, M ; Ghane, Z ; Ghazyani, N ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    2013
    Abstract
    We report a new design of solar cells based on semiconductor quantum dots (QDs), monolithic quantum dot sensitized solar cells (MQDSCs). MQDSCs offer the prospect of having lower cost and a simpler manufacturing process in comparison to conventional double substrate QDSCs. Our proposed monolithic QDSCs have a triple-layer structure, composed of a CdS sensitized mesoporous TiO2 photoanode, a scattering layer made by a core-shell structure of TiO 2/SiO2, and a carbon active/graphite counter electrode layer, which are all deposited on a single fluorine doped tin oxide (FTO) glass substrate. Mesoporous TiO2 was sensitized with CdS QDs by successive ionic layer adsorption and reaction. Here,... 

    Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells

    , Article Advanced Materials ; Volume 25, Issue 12 , January , 2013 , Pages 1769-1773 ; 09359648 (ISSN) Lan, X ; Bai, J ; Masala, S ; Thon, S. M ; Ren, Y ; Kramer, I. J ; Hoogland, S ; Simchi, A ; Koleilat, G. I ; Paz-Soldan, D ; Ning, Z ; Labelle, A. J ; Kim, J. Y ; Jabbour, G ; Sargent, E. H ; Sharif University of Technology
    2013
    Abstract
    Herein, a solution-processed, bottom-up-fabricated, nanowire network electrode is developed. This electrode features a ZnO template which is converted into locally connected, infiltratable, TiO2 nanowires. This new electrode is used to build a depleted bulk heterojunction solar cell employing hybrid-passivated colloidal quantum dots. The new electrode allows the application of a thicker, and thus more light-absorbing, colloidal quantum dot active layer, from which charge extraction of an efficiency comparable to that obtained from a thinner, planar device could be obtained  

    Aggregates of plasmonic nanoparticles for broadband light trapping in dye-sensitized solar cells

    , Article Journal of Optics (United Kingdom) ; Volume 18, Issue 1 , November , 2015 ; 20408978 (ISSN) Sharifi, N ; Dabirian, A ; Danaei, D ; Taghavinia, N ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    Metallic nanoparticles (NPs) have not been effective in improving the overall performance of the cells with micrometer-thick absorbing layers mainly due to the parasitic optical dissipation in the metal. Here, using both experiment and theory, we demonstrate that aggregates of metallic NPs enhance the light absorption of dye-sensitized solar cells of a few micrometer-thick light absorbing layers. The composite electrode containing the optimal concentration of 5 wt% Au@SiO2 aggregates shows the enhancement of 80% and 52% in external quantum efficiency and photocurrent density, respectively. The superior performance of the aggregates relative to NP is attributed to their larger scattering... 

    TiO2 surface nanostructuring for improved dye loading and light scattering in double-layered screen-printed dye-sensitized solar cells

    , Article Journal of Applied Electrochemistry ; Volume 45, Issue 8 , 2015 , Pages 831-838 ; 0021891X (ISSN) Jalali, M ; Moakhar, R. S ; Kushwaha, A ; Goh, G. K. L ; Sadrnezhaad, S. K ; Riahi Noori, N ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    Abstract: Surface-nanostructured TiO2 nanorods were synthesized hydrothermally at 180 °C. Such nanorods have ‘crack-like’ surfaces that resemble burnt charcoal. Compared to nanorods with relatively smoother surfaces, the charcoal-like nanorods have higher-specific surface areas. By using the nanorods as a light-scattering layer in double-layered dye-sensitized solar cells, the cells based on the charcoal-like nanorods have 20 % higher dye loading and also higher diffuse reflectance compared with cells utilizing ‘smooth’ nanorods. The efficiency of a screen-printed double-layer dye-sensitized solar cell based on the charcoal-like nanorods is higher at 7.29 %. Electrochemical... 

    Quasi core/shell lead sulfide/graphene quantum dots for bulk heterojunction solar cells

    , Article Journal of Physical Chemistry C ; Volume 119, Issue 33 , 2015 , Pages 18886-18895 ; 19327447 (ISSN) Tavakoli, M. M ; Aashuri, H ; Simchi, A ; Kalytchuk, S ; Fan, Z ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    Hybrid nanostructures combining semiconductor quantum dots and graphene are attracting increasing attention because of their optoelectronic properties promising for photovoltaic applications. We present a hot-injection synthesis of a colloidal nanostructure which we define as quasi core/shell PbS/graphene quantum dots due to the incomplete passivation of PbS surfaces with an ultrathin layer of graphene. Simulation by density functional theory of a prototypical model of a nonstoichiometric Pb-rich core (400 atoms) coated by graphene (20 atoms for each graphene sheet) indicates the possibility of surface passivation of (111) planes of PbS with graphene resulting in a decrease in trap states... 

    Improved photovoltaic performance of nanostructured solar cells by neodymium-doped TiO2 photoelectrode

    , Article Materials Letters ; Volume 159 , November , 2015 , Pages 273-275 ; 0167577X (ISSN) Shogh, S ; Mohammadpour, R ; Zad, A. I ; Taghavinia, N ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Well-crystallized TiO2 and neodymium (Nd)-doped TiO2 nanoparticles with various doping levels were synthesized by hydrothermal method and utilized as the photoanode of nanostructured solar cells. The results indicated that Nd-doping was caused the absorption spectra shift to higher wavelength while the morphology and surface area were unchanged. As a result, by employing 0.4 mol% Nd in the TiO2 photoelectrode, the overall conversion efficiency of the cell reached 9.08% which is 26% higher than pure one. Based on the photo-electrochemical characterizations, the improvement is a consequence of electrons injection increment from dye to TiO2 conduction...