Loading...
Search for: deposits
0.014 seconds
Total 693 records

    Multiphysics Modeling and Magnetic Control of Powder Deposition Process in DMD Method of Additive Manufacturing Technology

    , M.Sc. Thesis Sharif University of Technology Nejati Eghteda, Sina (Author) ; Movahhedy, Mohammad Reza (Supervisor)
    Abstract
    Direct Metal Deposition is one of the methods of Additive manufacturing that has seen the most spread in recent years. In this method metal powder is directed towards the free surface of the workpiece through a nuzzle, and is simultaneously heated to become molten in a melting pool by a laser beam and begins the deposition process. One of the parts that make up a DMD system is powder feeding nuzzle. These nuzzles usually encounter a similar fundamental problem: that the effect of gravity on the stream of metal powder and the carrier fluid causes this stream to deviate from its intended position. To prevent this, nuzzles are usually designed with a fixed downward angle and the angle of the... 

    Investigation of the Effect of Additive Manufacturing Process Parameters on the Geometry of Components Made of Inconel 625 by Direct Metal Deposition

    , M.Sc. Thesis Sharif University of Technology Nankali, Mobin (Author) ; Akbary, Javad (Supervisor) ; Moradi, Mahmoud (Supervisor)
    Abstract
    Additive manufacturing technology (AM) is one of the new methods of rapid prototyping. Experts claim that using this process can produce a prototype of the product with any complex geometry in the shortest possible time. Among the methods of metal additive fabrication, the direct metal layering method with the powder coaxial nozzle has different capabilities and has received much attention by researchers. In this research, we intend to find a relationship between device parameters and the geometry of samples made by direct metal layer method. According to the research, many parameters affect the quality of the samples made by this method, the most effective of which are the three parameters... 

    Development of a New Simulation Tool to Study the Asphaltene Precipitation and Deposition in Oil Well Column Based on Particle Scaling

    , M.Sc. Thesis Sharif University of Technology Naseri Boroujeni, Saman (Author) ; Jamshidi, Saied (Supervisor) ; Taghikhani, Vahid (Supervisor)
    Abstract
    Formation, precipitation and deposition of heavy organic compounds of petroleum fluids including, but not limited to, asphaltene in oil reservoirs and production systems have been by far the most important and challenging flow assurance problems. Therefore, preventative actions to control organic deposits in oil formations and production systems which can lead inevitably to reduction or cessation in production, have always been a main challenge for oil producers.In this thesis, a one dimensional simulator have been developed to study asphaltene precipitation, aggregation and deposition in an oil well column at isothermal and non-isothermal conditions. While the previously proposed PC-SAFT... 

    Electrophoretic Deposition of (Mn,Co)3O4 Spinel Coating for Solid Oxide Fuel Cell Interconnects

    , M.Sc. Thesis Sharif University of Technology Mirzaei, Mohamad Mahdi (Author) ; Faghihi Sani, Mohammad Ali (Supervisor) ; Simchi, Abdol Reza (Supervisor)
    Abstract
    Solid oxide fuel cell (SOFC) is one of the promising candidates for clean energy production. Due to the high operating temperature of SOFC, a protective coating is commonly applied on the surface of interconnects to prevent oxidation. In this study, electrophoretic deposition was employed to prepare a manganese-cobalt spinel coating on the surface of ferritic stainless steel (AISISAE430) substrates. MnCo2O4 powder with an average particle size of 60 nm was utilized and the sintering behavior of the coatings at different temperatures was studied. Non-isothermal and isothermal sintering behavior of the powder compacts were examined by employing a sensitive dilatometer. Master sintering curve... 

    Three Phase Modeling of Fluid Flow in the Well Tubing to predict Asphaltene Deposition

    , M.Sc. Thesis Sharif University of Technology Mehdipour, Hossein (Author) ; Ayatollahi, Shahaboddin (Supervisor)
    Abstract
    In this thesis, by focusing on the hydraulics of three phase flow in vertical tubing to investigate asphaltene deposition problem, the solid particles behaviors in a turbulent flow is fully studied. Reasonable size distribution for particles (based on previous works and researches) was assumed and a model for 2 sections of a Marrat oil field well to evaluate their asphaltene deposition problem was developed. Three phase liquid-gas-solid flow in the well tubing was simulated. Asphaltene deposition profile on the well tubing, mean and maximum of the deposition rate and particle concentrations in the flow regime were calculated and compared with real field data. Better agreement with field data... 

    Functional Design of a Coating System for the Telescope Mirrors, A Recognition to Telescope of Iranian National Observatory

    , M.Sc. Thesis Sharif University of Technology Mahdizadeh, Sajjad (Author) ; Moshfegh, Alireza (Supervisor) ; Khosroshahi, Habib (Co-Advisor)
    Abstract
    Functional design of coating system for the primary mirror of the Iranian National Observatory (INO) is done. This telescope has a 3.4 m primary mirror in diameter, made of Zerodur from Schott. Although similar coating systems are in use since years ago, this is the first attempt to design a system for such a large surface case in Iran. Systematic approach led us first to clarify and identifying the design requirements. Lower limit of 80% for reflectance on all wavelength range from 325-1000 nm, thickness of 100 nm with un-uniformity of 5 nm, adhesion enough to pass the selotape test and surface roughness of less than 8 nm. Study of the available methods for coating and selection of the best... 

    The Investigation on Hydroxyapatite Coating on Magnesium Alloy and Its Properties

    , M.Sc. Thesis Sharif University of Technology Mazaheri Kalahrood, Amir (Author) ; Afshar, Abdollah (Supervisor)
    Abstract
    Magnesium and its alloys are biodegradable materials with mechanical properties similar to the bone tissue, therefore these materials are suitable for producing orthopedic implants. Unfortunately Magnesium and its alloys are corroded too fast in physiological environment which is the main obstacle for usage of these materials as orthopedic implants. Producing Hydroxyapatite(HA) coatings on surface of Magnesium and its alloys is one of the popular and useful methods for reducing the corrosion rate in physiological environment. HA is a biocompatible and bioactive coating with the ability to bond chemically with the bone tissue and therefore it is largely used as a bioactive coating on the... 

    Investigation of Asphaltene Electro-deposition In Presence of Addetives

    , M.Sc. Thesis Sharif University of Technology Moradpour, Nikoo (Author) ; Ayatollahi, Shahabodin (Supervisor) ; Dehghani, Farzaneh ($item.subfieldsMap.e)
    Abstract
    Given the decreasing trend of light petroleum reserves and the necessity to produce heavy and extra-heavy oil resources, the challenge of dealing with existing asphaltene related problems, which is the heaviest and the most complex component of crude oil, has become increasingly tangible. Asphaltene precipitates and deposits due to pressure, temperature or composition alterations which leads to obstruction of porous media and production facilities. Set the costly methods aside, one of the available approaches to prevent asphaltene precipitation, is to apply an electric field upon the suspected zone, which is cheap and uncomplicated. Besides, utilizing nano-particles while applying electric... 

    Designing a Continuous Photo-reactor using Semiconductor Nanoparticles for Wastewater Treatment

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Mohammad Moein (Author) ; Rashtchian, Davood (Supervisor) ; Vossoughi, Manouchehr (Supervisor)
    Abstract
    In First part, the electrophoretic deposition method was utilized to immobilize TiO2 particles on stainless steel substrates. In addition, for the first time, statistics-based experimental design using response surface methodology (RSM) was employed to investigate the effect of four key coating parameters (i.e. applied voltage, calcination temperature, photocatalyst weight percentage, and deposition time) on the photocatalytic degradation. Analysis of variance revealed that the proposed model was adequate. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to evaluate the effects of the parameters on degradation efficiency. The optimum applied voltage, calcination... 

    Fabrication and Optimization of Transparent Conductive Aluminum-Doped Zinc Oxide Thin Films by Chemical Bath Deposition Method

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Sina (Author) ; Taghavinia, Nima (Supervisor) ; Abachi, Parvin (Supervisor)
    Abstract
    Zinc oxide is a wide band gap semiconductor material with wide applications as conductive oxides used in electro-optical devices. Thin films of doped zinc oxide (e.g. Al:ZnO, B:ZnO) are already used in thin-film solar cell technologies as electrodes. Chemical bath deposition (CBD) is a promising method for fabricating transparent and conductive ZnO layers at low temperatures (<100 °C) on nonconductive and temperature-sensitive substrates. Having a natural crystal habit, ZnO readily grows rod-like arrays when grown in an aqueous solution by CBD, posing challenges when attempting to deposit dense and conductive layers. The purpose of this study was to deposit dense and conductive zinc oxide... 

    Synthesis and Characterization of Grapheme Foams Fabricated by Chemical Vaporization Deposition

    , M.Sc. Thesis Sharif University of Technology Mahboubi, Sajad (Author) ; Akhavan, Omid (Supervisor) ; Azimirad, Rouhollah (Co-Advisor)
    Abstract
    The main purpose of this theses is to synthesize graphene by chemical vapor deposition (CVD) of a hydrocarbon gas such as methane on the nickel foam substrate and then to characterize this kind of graphene. Graphene is a single layer of carbon atoms, discovered in 2004, which has led mankind to new eras in all fields by its extraordinary features such as extra high electron mobility, high thermal conductivity, excellent mechanical strength, optical transparence and extra high specific surface. The advantage of this method compared to other methods is that the graphene generated has a better structural quality. Graphene foam firstly, because of the continuity of the foam structure, has better... 

    Combination and Depositing of NanoComposite of Barium Titanate-Strontium Hegzaferrite on Silicon Substrate by Pulsed Laser Deposition and Investigation of Multiferroic properties

    , M.Sc. Thesis Sharif University of Technology Moballegh, Mohammad (Author) ; Nemati, Ali (Supervisor) ; Mahdavi, Mohammad (Supervisor)
    Abstract
    Electrical and magnetic thin films have attracted many researchers’ attentions in random access memories, sensors, actuators and Nano electronic systems industries in recent years. Recent tendencies on decreasing the dimensions of the electronic equipment generate important investigations on coupling the electrical and magnetic properties. In this way multiferroic material as it has these two properties and has a significant between other similar materials, attracted much attention of researchers. So in this research at the first step, it has proceeded to make a multiferroc composite with depositing of barium titanate and strontium hegzaferrite by pulsed laser depositions and for decreasing... 

    The Comparison Between TiN and Hard Chromium Coatings

    , M.Sc. Thesis Sharif University of Technology Ghominejad , Hanieh (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    This research focuses on finding an appropriate method for increasing wear and corrosion resistance of hard coating TiN PVD and chromium. The substrate was made up of 42CrMo4 (DIN) steel (used for marine industries) and coated by TiN Arc PVD process and hard chromium electro-deposition. The results of these two coatings are compared and the better coating which is TiN Arc PVD is suggested. To find the best method for coating, several test studies are organized such as: the mechanical and tribological properties of TiN PVD and hard chromium coatings for wear and corrosion resistance applications are organized. The potentiodynamic polarization technique was used to measure the corrosion rate... 

    Investigating Electrochemical Behavior of Biosensor Based on Vertically Aligned Carbon Nanotubes

    , Ph.D. Dissertation Sharif University of Technology Gholizadeh, Azam (Author) ; Shahrokhian, Saeed (Supervisor) ; Iraji Zad, Azam (Co-Advisor) ; Mohajerzadeh, Shamsoddin (Co-Advisor) ; Vossoughi, Manoochehr (Co-Advisor)
    Abstract
    In this research we focus on fabrication, characterization and performance of biosensors based on vertically aligned carbon nanotubes. Carbon nanotubes have been used as high density carbon nanotubes and nanoelectrode array. Carbon nanotubes have been grown using plasma enhanced chemical vapor deposition method. Characterization and performance of biosensors have been studied by cyclic voltammetry and electrochemical impedance spectroscopy methods.
    The mediator-less glutamate biosensor is prepared based on covalently attached glutamate dehydrogenase on vertically aligned carbon nanotubes. The biosensor has a low detection limit of 57 nM, two linear range of 0.1-20 µM with sensitivity of... 

    Synthesis and Characterization of CdS Modified TiO2 Nanotubes for Studying of Photoelectrochemical (PEC) Properties

    , M.Sc. Thesis Sharif University of Technology Qorbani, Mohammad (Author) ; Moshfegh, Alireza (Supervisor) ; Azimirad, Rouhollah (Supervisor)
    Abstract
    In this research, first thin films with nanostructures of titanium nanotube arrays (TNAs) synthesized by anodization under different applied voltage (20- 60 V) and different reaction times (120 and 200 min). The electrolyte solution for synthesizing the samples contained 90% ethylene glycol (EG), 10% DI water, 0.1 M NHR4RF and a little HR3RPOR4R to reach the pH to 5.6. The synthesized samples crystallized under annealing treatment at 500 °C (with heating rate of 9.5 °CminP -1 P). The scanning electron microscopy (SEM) analysis was indicate that the length and the inner diameter of the nanotubes have increased from 1.6 μm and 67 nm (for 30 V anodization and for 2h) to 4.2 μm and 125 nm (for... 

    Design and Fabrication of Electronic Subsystems for NFCVD

    , M.Sc. Thesis Sharif University of Technology Ghaderi, Erfan (Author) ; Rashidian, Bizhan (Supervisor)
    Abstract
    The fabrication of future electronic and optical devices will require advanced nanofabrication techniques that realize high spatial resolution and high precision in controlling size and position, and that are applicable to various materials. Near-field CVD (NF-CVD) was proposed to solve these problems with no need to perform nanolithography prcesses. NFCVD system has two major subsystems, first vacuum chamber and gas distribution system for delivering parent gases to the chamber and second, a nanopositiong system to keep the probe and the sample in the constant systems.In this dissertation we have set up a piezoelectric nanopositiong system and its driver modules. The positioning accuracy... 

    Synthesis of Graphene by New Methods, and its Application for Adsorption of Cobalt

    , M.Sc. Thesis Sharif University of Technology Faham Mofrad, Ali (Author) ; Outokesh, Mohammad (Supervisor) ; Shafiekhani, Azizollah (Supervisor)
    Abstract
    In this study graphene and graphene adsorbent for the Co2+ ion were created from sodium phenoxide and calcium phenoxide, respectively, using the chemical vapor deposition method, and their chemical, physical, and morphological properties were investigated using FT-IR, UV, XRD, Raman, TEM, FE-SEM, and XPS. The results suggest that the optimum reaction condition for synthesizing mono-layer and multi-layer graphene is the 750 °C temperature for 30 min. The Co2+ adsorbing properties of the synthesized graphene adsorbent from calcium phenoxide was investigated. The investigation of solvation properties suggests insolubility above 650 °C and the kinetic data suggest the rapidness of the Co2+... 

    Investigation of Application of Nano-Photocatalytic Degradation for Industrial Wastewater Treatmen

    , M.Sc. Thesis Sharif University of Technology Falahati, Mohammad (Author) ; Roosta Azad, Reza (Supervisor) ; Vossoughi, Manouchehr (Supervisor)
    Abstract
    The main objective of this project is the deposition of photo-catalysts on cement and concrete blocks with an emphasis on commercialization. We started with an extensive study of common methods introduced in previous literature, and conclude with a number of suggestions for industrialization. First, slurry and sol-gel deposition of the photo-catalysts on blocks of type 2 commercial cement which is one of the most used materials in construction of buildings and waste-water treatment plants has been examined to reach a method of sample formation. Due to the simplicity of common methods and low quality of formed samples (less than 5 percent aging efficiency), the obtained experience was used to... 

    Design and Optimization of RSFQ Based Digital SQUID for High Sensitive Measurement of Widely Varying Magnetic Fields

    , Ph.D. Dissertation Sharif University of Technology Foroughi, Farshad (Author) ; Fardmanesh, Mehdi (Supervisor)
    Abstract
    Analog SQUIDs have limited slew rate and dynamic range and these problems make it hard to operate SQUID systems in unshielded applications like Bio-magnetic imaging and NDE. Recently by combining analog SQUIDs and RSFQ Logic, new class of magnetic sensors are introduced. These sensors have an acceptable sensitivity and very high dynamic range. On the other hand these sensors, Which are called Digital SQUIDs, can be directly connected to digital signal processing stages. In This work, for first time, a digital SQUID completely based on i-directional RSFQ was designed and optimized. using Bi-directional RSFQ, one can significantly simplify the digital SQUID circuit design and therefore... 

    Coke Deposition Process in Nano-Pores of Naphtha Reforming Catalyst

    , M.Sc. Thesis Sharif University of Technology Farahipour, Reza (Author) ; Baghalha, Morteza (Supervisor) ; Kazemeini, Mohammad (Supervisor)
    Abstract
    Nowadays catalytic reforming of naphtha is one of the most important parts of the refining process. The catalyst of this process is mostly Pt-Re on the γ-alumina support. The major cause of deactivation is coke deposition and blockage of the pores as a result. Meanwhile, modeling of the process and the deactivation of catalyst would help refining industries to achieve higher yields. In this study industrial data of the catalytic reforming unit #2 in Isfahan Refinery Plant were used to model the process, optimized parameters have been calculated and the best contribution of the catalyst among the four reactors was presented. Then with using a deactivation function the whole coking...