Loading...
Search for: distributed-generation
0.007 seconds
Total 176 records

    Optimal distributed generation allocation in distribution network using Hereford Ranch algorithm

    , Article ICEMS 2005: 8th International Conference on Electrical Machines and Systems, Nanjing, 27 September 2005 through 29 September 2005 ; Volume 2 , 2005 , Pages 916-918 ; 7506274078 (ISBN); 9787506274074 (ISBN) Gandomkar, M ; Vakilian, M ; Ehsan, M ; Sharif University of Technology
    IEEE Computer Society  2005
    Abstract
    The necessity for flexible electric systems, energy saving, loss reducing and environmental impact are providing Impetus to the development of Distributed Generation (DG). DG Includes the application of small generators, scattered throughout a power system, to provide the electric power needed by electrical customer. Such locally distributed generation, has several merits from the viewpoint of environmental restriction and location limitations, as well as transient and voltage stability In the power system. The exact solution of the DG allocation can be obtained by a complete enumeration of all feasible combinations of sites and sizes of DGs In the network. The number of alternatives could... 

    A new power management control strategy for a MV microgrid with both synchronous generator and inverter-interfaced distributed energy resources

    , Article IEEE International Symposium on Industrial Electronics ; 1- 4 June , 2014 , pp. 2529-2534 ; ISBN: 978-147992399-1 Zangeneh, M ; Hamzeh, M ; Mokhtari, H ; Karimi, H ; Sharif University of Technology
    Abstract
    Control strategies of a microgrid which includes both synchronous generators and converter-based distribution generation (DG) units must be designed such that effective operation of the microgrid is achieved. The main objective of this paper is to develop a high performance control strategy for an islanded medium voltage (MV) microgrid consisting of inverter and non-inverter interfaced DG units. A new control method for the synchronous generator in an islanded microgrid is proposed based on a virtual droop scheme. The proposed strategy can effectively manage the real and reactive powers of the microgrid among the inverter and non-inverter based DG units. The steady state and dynamic... 

    A decentralized self-adjusting control strategy for reactive power management in an islanded multi-bus MV microgrid

    , Article Canadian Journal of Electrical and Computer Engineering ; Volume 36, Issue 1 , 2013 , Pages 18-25 ; 08408688 (ISSN) Hamzeh, M ; Mokhtari, H ; Karimi, H ; Sharif University of Technology
    2013
    Abstract
    This paper presents a decentralized self-adjusting reactive power controller for the autonomous operation of a multi-bus medium voltage (MV) microgrid. The main objective of the proposed control strategy of each distributed generation (DG) unit is to compensate the reactive power of its local loads and to share the reactive power of the nonlocal loads among itself and other DG units. The proposed control strategy includes an improved droop controller whose parameters are adjusted according to the reactive power of the local loads. A virtual inductive impedance loop is augmented to the voltage controller to enhance the steady state and transient responses of the proposed reactive power... 

    A robust two-degree-of-freedom control strategy for an islanded microgrid

    , Article IEEE Transactions on Power Delivery ; Volume 28, Issue 3 , 2013 , Pages 1339-1347 ; 08858977 (ISSN) Babazadeh, M ; Karimi, H ; Sharif University of Technology
    2013
    Abstract
    This paper presents a new robust control strategy for an islanded microgrid in the presence of load unmodeled dynamics. The microgrid consists of parallel connection of several electronically interfaced distributed generation units and a local load. The load is parametrically uncertain and topologically unknown and, thus, is the source of unmodeled dynamics. The objective is to design a robust controller to regulate the load voltage in the presence of unmodeled dynamics. To achieve the objective, the problem is first characterized by a two-degree-of-freedom (2DOF) feedback-feedforward controller. The 2DOF control design problem is then transformed to a nonconvex optimization problem.... 

    Optimal siting of DG units in power systems from a probabilistic multi-objective optimization perspective

    , Article International Journal of Electrical Power and Energy Systems ; Volume 51 , 2013 , Pages 14-26 ; 01420615 (ISSN) Dehghanian, P ; Hosseini, S. H ; Moeini Aghtaie, M ; Arabali, A ; Sharif University of Technology
    2013
    Abstract
    Along with the increasing demand for electrical power, distributed generations (DGs) have so far found their pivotal roles in the restructured environment of power distribution systems. As an indispensable step toward a more reliable power system, the DGs optimal allocation strategy, deemed to be the most techno-economically efficient scheme, comes to the play and is profoundly taken under concentration in this study. This paper devises a comprehensive multi-objective (MO) optimization approach by which all the crucial and maybe contradictory aspects of great influence in the placement process can be accounted for. Total imposed costs, total network losses, customer outage costs as well as... 

    Possibilistic evaluation of distributed generations impacts on distribution networks

    , Article IEEE Transactions on Power Systems ; Volume 26, Issue 4 , 2011 , Pages 2293-2301 ; 08858950 (ISSN) Soroudi, A ; Ehsan, M ; Caire, R ; Hadjsaid, N ; Sharif University of Technology
    Abstract
    In deregulated power systems, the distribution network operator (DNO) is not responsible for investment in distributed generation (DG) units, and they are just concerned about the best architecture ensuring a good service quality to their customers. The investment and operating decisions related to DG units are then taken by entities other than DNO which are exposed to uncertainty. The DNO should be able to evaluate the technical effects of these uncertain decisions. This paper proposes a fuzzy evaluation tool for analyzing the effect of investment and operation of DG units on active losses and the ability of distribution network in load supply at presence of uncertainties. The considered... 

    Multivariable control strategy for autonomous operation of a converter-based distributed generation system

    , Article 2011 IEEE/PES Power Systems Conference and Exposition, PSCE 2011, 20 March 2011 through 23 March 2011, Phoenix, AZ ; March , 2011 , Page(s): 1 - 8 ; 9781612847870 (ISBN) Nejati, A ; Nobakhti, A ; Karimi, H ; Sharif University of Technology
    2011
    Abstract
    This paper presents a control strategy for the autonomous (islanded) operation of a distributed generation (DG) unit. The DG unit supplies a balanced load through a voitage-sourced converter (VSC). To maintain the autonomous operation in the islanded mode, the DG unit should provide its dedicated load with a sinusoidal voltage with a constant magnitude and a constant frequency. The dynamic model of the islanded DG system is represented by a set of nonlinear equations. Since the objective is to regulate voltage and frequency of the islanded DG about their rated values, the nonlinear model is linearized about the operating point. The obtained linearized model represents a multivariable LTI... 

    Efficient immune-GA method for DNOs in sizing and placement of distributed generation units

    , Article European Transactions on Electrical Power ; Volume 21, Issue 3 , 2011 , Pages 1361-1375 ; 1430144X (ISSN) Soroudi, A ; Ehsan, M ; Sharif University of Technology
    Abstract
    This paper proposes a hybrid heuristic optimization method based on genetic algorithm and immune systems to maximize the benefits of Distribution Network Operators (DNOs) accrued due to sizing and placement of Distributed Generation (DG) units in distribution networks. The effects of DG units in reducing the reinforcement costs and active power losses of distribution network have been investigated. In the presented method, the integration of DG units in distribution network is done considering both technical and economical aspects. The strength of the proposed method is evaluated by applying it on a small and a realistic large scale distribution network and the results are compared with... 

    Nonlinear adaptive control of grid-connected three-phase inverters for renewable energy applications

    , Article International Journal of Control ; 2015 ; 00207179 (ISSN) Mahdian Dehkordi, N ; Namvar, M ; Karimi, H ; Piya, P ; Karimi Ghartemani, M ; Sharif University of Technology
    Abstract
    Distributed generation (DG) units are often interfaced to the main grid using power electronic converters including voltage-source converters (VSCs). A VSC offers dc/ac power conversion, high controllability, and fast dynamic response. Because of nonlinearities, uncertainties, and system parameters’ changes involved in the nature of a grid-connected renewable DG system, conventional linear control methods cannot completely and efficiently address all control objectives. In this paper, a nonlinear adaptive control scheme based on adaptive backstepping strategy is presented to control the operation of a grid-connected renewable DG unit. As compared to the popular vector control technique, the... 

    Robust decentralized control for islanded operation of two radially connected DG systems

    , Article 2010 IEEE International Symposium on Industrial Electronics, ISIE 2010, Bari, 4 July 2010 through 7 July 2010 ; July , 2010 , Pages 2272-2277 ; 9781424463916 (ISBN) Moradi, R ; Karimi, H ; Karimi Ghartemani, M ; The Institute of Electrical and Electronics Engineers (IEEE); IEEE Industrial Electronics Society (IES); IEEE Control Systems Society (CSS); Society of Instrument and Control Engineers (SICE-Japan); Politecnico di Bari ; Sharif University of Technology
    2010
    Abstract
    A decentralized servomechanism controller for islanded (autonomous) operation of radial connection of two distributed generation (DG) units is proposed in this paper. Each DG unit utilizes a voltage-sourced converter (VSC) for interface to its dedicated load. The DG units and the loads are to operate in the islanded mode of operation. Each DG unit regulates the voltage of its dedicated load in a decentralized manner. In this paper, it is first shown that the radial connection of two DG units in the islanded mode constitutes an interconnected composite system consisting of two subsystems. Moreover, the paper shows that the overall islanded system can be controlled by the local controllers,... 

    A multistage model for distribution expansion planning with distributed generation in a deregulated electricity market

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 34, Issue 3 , 2010 , Pages 275-287 ; 10286284 (ISSN) Porkar, S ; Abbaspour Tehrani Fard, A ; Poure, P ; Saadate, S ; Sharif University of Technology
    2010
    Abstract
    Distribution systems management is becoming an increasingly complicated issue due to the introduction of new technologies, new energy trading strategies and a new deregulated environment. In the new deregulated energy market and considering the incentives coming from the technical and economic fields, it is reasonable to consider Distributed Generation (DG) as a viable option for systems reinforcement in competition with voltage regulator devices, to solve the lacking electric power supply problem and meet the load growth requirements with a reasonable price as well as the system power quality problems. The problem of optimal placement and size is formulated in two stages; minimization of... 

    Developing a multi-objective framework for planning studies of modern distribution networks

    , Article 2016 International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2016 - Proceedings, 16 October 2016 through 20 October 2016 ; 2016 ; 9781509019700 (ISBN) Haji Seyed Olia, S. A ; Jooshaki, M ; Moeini Aghtaie, M ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    This paper presents a new framework for planning studies of modern distribution networks. Presence of electric vehicles (EVs) and various technologies of distributed generation (DG) technologies are considered in the studies as two upcoming events of the future systems. In this regard, place and capacity of DG units along with the reinforcement of distribution lines are determined running a multi-objective (MO) optimization algorithm. Total losses of the distribution network along with annualized cost of expansion plans including investment, operation and maintenance costs are introduced as the main criteria which should be optimized in the proposed framework. An effective Posteriori... 

    A bi-level approach for optimal contract pricing of independent dispatchable DG units in distribution networks

    , Article International Transactions on Electrical Energy Systems ; Volume 26, Issue 8 , 2016 , Pages 1685-1704 ; 20507038 (ISSN) Sadeghi Mobarakeh, A ; Rajabi Ghahnavieh, A ; Haghighat, H ; Sharif University of Technology
    John Wiley and Sons Ltd  2016
    Abstract
    Distributed generation (DG) units are increasingly installed in the power systems. Distribution companies (DisCo) can opt to purchase the electricity from DG in an energy purchase contract to supply the customer demand and reduce energy loss. This paper proposes a framework for optimal contract pricing of independent dispatchable DG units considering competition among them. While DG units tend to increase their profit from the energy purchase contract, DisCo minimizes the demand supply cost. Multi-leader follower game theory concept is used to analyze the situation in which competing DG units offer the energy price to DisCo and DisCo determines the DG generation. A bi-level approach is used... 

    Nonlinear adaptive control of grid-connected three-phase inverters for renewable energy applications

    , Article International Journal of Control ; Volume 90, Issue 1 , 2017 , Pages 53-67 ; 00207179 (ISSN) Mahdian Dehkordi, N ; Namvar, M ; Karimi, H ; Piya, P ; Karimi Ghartemani, M ; Sharif University of Technology
    Abstract
    Distributed generation (DG) units are often interfaced to the main grid using power electronic converters including voltage-source converters (VSCs). A VSC offers dc/ac power conversion, high controllability, and fast dynamic response. Because of nonlinearities, uncertainties, and system parameters’ changes involved in the nature of a grid-connected renewable DG system, conventional linear control methods cannot completely and efficiently address all control objectives. In this paper, a nonlinear adaptive control scheme based on adaptive backstepping strategy is presented to control the operation of a grid-connected renewable DG unit. As compared to the popular vector control technique, the... 

    A multi-objective framework for energy resource scheduling in active distribution networks

    , Article International Journal of Ambient Energy ; 2018 , Pages 1-13 ; 01430750 (ISSN) Shafiee, M ; Ghazi, R ; Moeini Aghtaie, M ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    Purpose: The purpose of this paper is to investigate the impacts of electric vehicles' (EVs) charging/discharging decisions in energy resources scheduling problem of active distribution networks. Design/methodology/approach: The problem under study is modelled as a two-stage optimisation problem in which the main requirements of EV owners are introduced as an objective function of the first stage. The total energy costs and the emission factor are considered as the main criteria of the second stage. The output generation schedules of distributed generation (DG) technologies together with the charging/discharging schedule of EVs are proposed as decision variables of the energy scheduling... 

    Robust restoration of distribution systems considering DG units and direct load control programs

    , Article Turkish Journal of Electrical Engineering and Computer Sciences ; Volume 26, Issue 5 , 2018 , Pages 2676-2687 ; 13000632 (ISSN) Asadi, A ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Turkiye Klinikleri Journal of Medical Sciences  2018
    Abstract
    This paper presents a new method for restoration of distribution networks after a fault occurrence. This problem is solved from the viewpoint of the distribution system operator with the main goal of minimizing the operating cost during the fault clearance period. The effects of distributed generation (DG) units and direct load control (DLC) programs are considered in designing the proposed restoration procedure. Moreover, the uncertainties associated with the predicted loads of different nodes and the availability of DG are modeled here. Robust optimization is used to model the uncertainties of restoration problems and manage their associated risks. Finally, a robust reconfiguration plan is... 

    Optimizing operation indices considering different types of distributed generation in microgrid applications

    , Article Energies ; Volume 11, Issue 4 , 2018 ; 19961073 (ISSN) Ghanbari, N ; Mokhtari, H ; Bhattacharya, S ; Sharif University of Technology
    MDPI AG  2018
    Abstract
    The need for independent power generation has increased in recent years, especially with the growing demand in microgrid systems. In a microgrid with several generations of different types and with all kinds of loads of variable nature, an optimal power balance in the system has to be achieved. This optimal objective, which results in minimal energy losses over a specific period of time, requires an optimal location and sizing of the distributed generations (DGs) in a microgrid. This paper proposes a new optimization method in which both optimal location of the DGs and their generation profile according to the load demand profile as well as the type of DG are determined during the life time... 

    A multi-objective framework for energy resource scheduling in active distribution networks

    , Article International Journal of Ambient Energy ; Volume 40, Issue 5 , 2019 , Pages 504-516 ; 01430750 (ISSN) Shafiee, M ; Ghazi, R ; Moeini Aghtaie, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Purpose: The purpose of this paper is to investigate the impacts of electric vehicles' (EVs) charging/discharging decisions in energy resources scheduling problem of active distribution networks. Design/methodology/approach: The problem under study is modelled as a two-stage optimisation problem in which the main requirements of EV owners are introduced as an objective function of the first stage. The total energy costs and the emission factor are considered as the main criteria of the second stage. The output generation schedules of distributed generation (DG) technologies together with the charging/discharging schedule of EVs are proposed as decision variables of the energy scheduling... 

    A flexibility-oriented model for distribution system expansion planning studies

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 737-741 ; 9781728115085 (ISBN) Karimi Arpanahi, S ; Jooshaki, M ; Moeini Aghtaei, M ; Abbaspour, A ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Employing more flexibility in power systems is one of the main challenges brought about by integrating more renewable energy sources in power systems. A promising way to overcome this challenge is to have local sources of flexibility in distribution level. In this respect, a novel approach is introduced in this paper for multi-stage distribution system expansion planning which jointly considers expansion of the network assets as well as flexibility enhancement. To this end, construction and reinforcement of feeders and substations are considered as various alternatives for network expansion. Moreover, installation of conventional dispatchable distributed generation units is selected as the... 

    Joint distributed generation and active distribution network expansion planning considering active management of network

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 702-708 ; 9781728115085 (ISBN) Kabirifar, M ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Pourghaderia, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Joint multistage expansion planning of active distribution network (ADN) is well investigated in this paper. This expansion model considers the effects of optimal operating conditions in the planning studies. In the proposed model, for each planning time stage, several operating scenarios are defined based on operational status of the network. The utilization of distributed energy resources (DERs) around the network is determined for each operating scenario through active management of these resources. In the planning level, investment in distribution network assets including feeders, substations, and distributed generations (DGs) incorporating conventional gas turbines and renewable wind...