Loading...
Search for: distributed-generation
0.007 seconds
Total 166 records

    Optimal distribution transformer sizing in a harmonic involved load environment via dynamic programming technique

    , Article Energy ; Volume 120 , 2017 , Pages 92-105 ; 03605442 (ISSN) Hajipour, E ; Mohiti, M ; Farzin, N ; Vakilian, M ; Sharif University of Technology
    Abstract
    Installation of a significant number of distributed generators (DGs), besides the application of non-sinusoidal loads such as; Plug-in Hybrid Electric Vehicles (PHEVs), in the emerging smart distribution networks and the industrial plants have posed a major challenge to the existing methods of optimal transformer sizing (OTS). The harmonic currents generated in these new environments not only substantially increase the transformer load losses, but also cause abnormal winding temperature rise and hence transformer excessive loss of life. Therefore, the harmonic contents of the loads currents should be accounted in choosing the appropriate size of distribution transformers. To address this... 

    A novel management scheme to reduce emission produced by power plants and plug-in hybrid electric vehicles in a smart microgrid

    , Article International Journal of Environmental Science and Technology ; Volume 17, Issue 5 , 2020 , Pages 2529-2544 Ashrafi, R ; Soleymani, S ; Mehdi, E ; Sharif University of Technology
    Springer  2020
    Abstract
    Recently, with the growth and development of distributed generation (DGs) and energy storage systems (ESSs), as well as smart control equipment, microgrids (MGs) have been developed. Microgrids are comprised of a limited number of constitutive parts, including loads, DGs, ESSs, and electric vehicles (EVs). This paper presents a novel scheme to manage active and reactive powers, based on DGs, ESSs, and EVs to reduce the total operation cost including power generation and emission costs. Simultaneous management of active and reactive power makes it possible to consider grid operation constraints together. In the proposed schedule, the vehicles are assumed to be plug-in hybrid electric... 

    A heuristic trade off model for integration of distributed generations in deregulated power systems considering technical, economical and environmental issues

    , Article 2008 IEEE 2nd International Power and Energy Conference, PECon 2008, Johor Baharu, 1 December 2008 through 3 December 2008 ; 2008 , Pages 1275-1279 ; 9781424424054 (ISBN) Hekmati, A ; Nasiri, R ; Bagheri, M ; Tehrani, A. A ; Sharif University of Technology
    2008
    Abstract
    With the introduction of restructuring concepts to traditional power systems, a great deal of attention is given to the utilization of distributed generation. Since the integration of DG units has been known as an alternative for main grid as a resource for energy supply, the determination of optimal sizing and sitting is an important issue in the planning procedure of DG. This work presents a comprehensive multi-objective model for integration of distributed generations into a distribution network, regarding various technical, economical and environmental issues such as reduction of carbon dioxide emissions and investment & running costs while the bus voltages shall be kept within... 

    Optimal energy management of a campus microgrid considering financial and economic analysis with demand response strategies

    , Article Energies ; Volume 14, Issue 24 , 2021 ; 19961073 (ISSN) Javed, H ; Muqeet, H. A ; Shehzad, M ; Jamil, M ; Khan, A. A ; Guerrero, J. M ; Sharif University of Technology
    MDPI  2021
    Abstract
    An energy management system (EMS) was proposed for a campus microgrid (μG) with the incorporation of renewable energy resources to reduce the operational expenses and costs. Many uncertainties have created problems for microgrids that limit the generation of photovoltaics, causing an upsurge in the energy market prices, where regulating the voltage or frequency is a challenging task among several microgrid systems, and in the present era, it is an extremely important research area. This type of difficulty may be mitigated in the distribution system by utilizing the optimal demand response (DR) planning strategy and a distributed generator (DG). The goal of this article was to present a... 

    Generation expansion planning of stand-alone micro-power systems using MADM techniques

    , Article 42nd International Universities Power Engineering Conference, UPEC 2007, Brighton, 4 September 2007 through 6 September 2007 ; 2007 , Pages 68-72 ; 1905593368 (ISBN); 9781905593361 (ISBN) Khodayar, M. E ; Afsharnia, S ; Ehsan, M ; Kamalinia, S ; Sedighizadeh, M ; Sharif University of Technology
    2007
    Abstract
    In this paper, Analytic Hierarchy Process and Data Envelopment Analysis are introduced as multi attribute decision making techniques in planning of standalone micro-power systems. The objective of the planning framework is to select the best configuration and capacity of different generating technologies in micro-power systems to minimize certain economical and environmental attributes. The economical attributes are capital cost and net present cost and the environmental attribute is emission. The proposed framework is illustrated by a case study on a real network in northern region of Iran  

    Multi-objective planning model for integration of distributed generations in deregulated power systems

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 34, Issue 3 , 2010 , Pages 307-324 ; 10286284 (ISSN) Soroudi, A. R ; Ehsan, M ; Sharif University of Technology
    2010
    Abstract
    This paper presents a long-term dynamic multi-objective model for distributed generation investment. The proposed model optimizes three objectives, namely active losses, costs and environmental emissions and determines the optimal schemes of sizing, sitting of DG units and specially the dynamics of investment over the planning period. The Pareto optimal solutions of the problem are found using a GA algorithm and finally a fuzzy satisfying method is applied to select the optimal solution considering the desires of the planner. The solutions of Pareto optimal front are analyzed to extract general useful information for planners about the appropriate DG technologies and placement schemes. The...