Loading...
Search for: lithium
0.013 seconds
Total 202 records

    Implementation of binder-free SnO2 NWs@C electrode and LiTFSI-based electrolyte for high-performance lithium-ion battery

    , Article Journal of Physics D: Applied Physics ; Volume 56, Issue 1 , 2022 ; 00223727 (ISSN) Hakimi, M ; Habibi, A ; Sanaee, Z ; Ghasemi, S ; Mohajerzadeh, S ; Sharif University of Technology
    Institute of Physics  2022
    Abstract
    This study has investigated the effect of carbon coating on the electrochemical performance of SnO2 Nanowires (NWs) as an electrode along with a bis (trifluoromethane) sulfonimide lithium (LiTFSI)-based electrolyte in a lithium-ion battery (LIB). The vapor-liquid-solid approach has been used to grow SnO2 NWs on the stainless steel mesh current collector. The obtained results have demonstrated that the utilization of the LiTFSI-based electrolyte improved the battery performance with the SnO2 NWs electrode over the LiPF6-based electrolyte. This may be due to the formation of a stable and thin solid electrolyte interphase layer. Since bare SnO2 NWs exhibit inferior cycling stability due to... 

    Preparation and Characterization of a Lithium Ion Conducting Electrolyte

    , M.Sc. Thesis Sharif University of Technology Toofan, Samin (Author) ; Nemati, Ali (Supervisor)
    Abstract
    In recent years lithium-air batteries captured worldwide attention because of their high energy density. Solid state electrolytes is one of the main components of lithium-air batteries. Lithium almunium titanium phosphate(LATP) is a nasicon type ion conduction which may be of great potential as solid electrolyte. The object of this thesis was the preparation of LATP solid electrolyte which can be used in a lithium-air battery. To reach this goal LATP powder was synthesized using a solution-based method and an appropriate crystallization temperature was selected based on obtained results of X-ray diffraction analysis. In the next step solid electrolytes was prepared under different pressing... 

    Electrochemical and Microstructural Analysis of Aging Mechanism of 18650 LiFePO4/Graphite Li-ion Batteries under Different C-Rate and Temperature Conditions

    , M.Sc. Thesis Sharif University of Technology Sharifi, Hossein (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    In this study, the aging of the LiFePO4/graphite cell was investigated in two different types of 18650 Li-ion batteries during cycling at various C-rates (0.5, 1, 2, 3, 4C) and high temperature under long-term cycling. An amount of 20% Capacity loss was considered as the end of the cycling. Batteries with a capacity of 1500 mAh after this capacity drop, experience 60, 120, 1502, and 2155 cycles, at the rates of 4, 3, 2, and 1C , and batteries with capacity of 1400 mAh was also 60, 360, 1100, 1000, and 805 cycles at a rate of 0.5C. Capacity decrease of the cell is in linear relationship with cycle number and the slope of the capacity-fading line increases with elevating current rate. Aging... 

    Capability of TiO2(B)-based Nanotubes to Adsorb Lithium Ion from Aqueous Solution

    , M.Sc. Thesis Sharif University of Technology Shoghi, Ali (Author) ; Askari, Masoud (Supervisor) ; Alamolhoda, Ali Asghar (Supervisor)
    Abstract
    Due to the technology advancement and the large-scale application of lithium-ion batteries in recent years, the market demand for lithium is growing rapidly and the availability of land lithium resources is decreasing significantly. As such, the focus of lithium extraction technologies has shifted to water lithium resources. Among various aqueous recovery technologies, the lithium ion-sieve (LIS) technology is considered the most promising one. This is because LISs are excellent adsorbents with high lithium uptake capacity, superior lithium selectivity, and good cycle performance. TiO2-based nanotubes are an appropriate option for adsorbing lithium from solution due to their high specific... 

    Synthesis and Characterization of Graphene/Tin (IV) Sulfide (SnS₂) Hybrid Nanostructures as Anode Material for Ionic Batteries

    , M.Sc. Thesis Sharif University of Technology Haji Bagheri, Majid (Author) ; Esfandiar, Ali (Supervisor)
    Abstract
    In the current century, an energy storage is one of the critical and important factors affecting on human life. Rechargeable batteries, specially Lithium ion batteries (LIBs), can be considered as ideal energy storage devices including various advantages e.g. high energy and power densities. In this work, Tin IV sulfide (SnS2) and its composites, making by conductive materials e.g. Reduced Graphene Oxide (SnS2@rGO), are prepared during two different synthesis methods consisting of Hydrothermal and Hot-bath, and their properties are investigated as anode material in LIB. The structural and electrochemical analyses demonstrated that the composite sample prepared by hot-bath method exhibited... 

    Transesterification of canola oil and methanol by lithium impregnated CaO–La2O3 mixed oxide for biodiesel synthesis

    , Article Journal of Industrial and Engineering Chemistry ; Volume 47 , 2017 , Pages 399-404 ; 1226086X (ISSN) Maleki, H ; Kazemeini, M ; Larimi, A. S ; Khorasheh, F ; Sharif University of Technology
    Abstract
    CaO–La2O3 mixed oxides were synthesized by co-precipitation coupled with Li doping through wet impregnation. These were used as catalysts for transesterification of canola oil and methanol toward biodiesel production. To determine the structure and morphology of the prepared catalysts, they were characterized by the XRD, FESEM, BET, and basic strength measurements. Under optimum reaction conditions of methanol/oil molar ratio of 15:1, 5 wt% catalyst at 65 °C, 96.3% conversion was obtained in 2.5 h of reaction duration. Moreover, the catalyst demonstrated a rather high stability where reuse of up to five cycles without significant loss of performance observed. © 2016 The Korean Society of... 

    Halogen-lithium exchange reaction using an integrated glass microfluidic device: an optimized synthetic approach

    , Article Organic Process Research and Development ; Volume 21, Issue 3 , 2017 , Pages 292-303 ; 10836160 (ISSN) Zeibi Shirejini, S ; Mohammadi, A ; Sharif University of Technology
    American Chemical Society  2017
    Abstract
    A telescoped approach was developed for the efficient synthesis of methoxybenzene through the generation of an unstable intermediate reagent, based on the Br-Li exchange reaction of p-bromoanisole and n-BuLi, followed by its reaction with water. In the first stage, p-methoxyphenyllithium was synthesized and consumed immediately in the second stage. For this purpose, an integrated glass microfluidic device was fabricated using laser ablation followed by the thermal fusion bonding method. The impact of various parameters, including solvent, reaction time, molar ratio, concentration of reagents, and flow rates were investigated to achieve the highest yield of the desired product, leading to an... 

    Structural, microstructural and electrochemical studies of TiO2-Ag double layer coated NCM cathode for lithium-ion batteries

    , Article Materials Research Express ; Volume 6, Issue 8 , 2019 ; 20531591 (ISSN) Sharifi Rad, A ; Ghorbanzadeh, M ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Lithium ion batteries as one of the most important energy storage equipments, have several challenges including capacity drop as number of cycles increases. Cathode particle coating is an effective approach in improvement of electrochemical performance of the batteries. In this study, TiO2-Ag coating was used to improve NCM cathode performance. The microstructure and crystal structure properties of coated NCMs were evaluated by the FE-SEM and XRD. Electrochemical behavior of the batteries was investigated by cycling performance analysis and EIS. TiO2 coating was deposited as a uniform layer and Ag coating was precipitated as dispersed nanoparticles. The results shows that using of TiO2-Ag... 

    A theory for coupled lithium insertion and viscoplastic flow in amorphous anode materials for Li-ion batteries

    , Article Mechanics of Materials ; Volume 152 , 2021 ; 01676636 (ISSN) Bagheri, A ; Arghavani, J ; Naghdabadi, R ; Brassart, L ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Amorphous lithium metal alloys (LixM, with M=Si, Ge, Sn, …) are attractive anode materials for lithium-ion batteries owing to their high energy-storage capacity and safety characteristics. However, repeated insertion of lithium often leads to chemo-mechanical degradation of the alloy, which can severely reduce the battery capacity and cycle life. Better understanding of the chemo-mechanical response of lithium alloys is needed to guide the design of damage-resistant anode microstructures. In this work, we propose a constitutive theory that couples large, viscoplastic deformations to the insertion and extraction of lithium in amorphous electrode materials. The theory relies on the concept of... 

    Modeling of sorption enhanced steam methane reforming in an adiabatic packed bed reactor using various CO2 sorbents

    , Article Journal of Environmental Chemical Engineering ; Volume 9, Issue 5 , 2021 ; 22133437 (ISSN) Shahid, M. M ; Abbas, S. Z ; Maqbool, F ; Ramirez Solis, S ; Dupont, V ; Mahmud, T ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    A 1-D heterogeneous model of sorption-enhanced steam methane reforming (SE-SMR) process in a packed bed reactor consisting of nickel catalyst well mixed with CO2 sorbent particles is investigated for three types of common sorbents. The performance of SE-SMR process is studied under low medium pressure conditions (3 – 11 bar) to find the optimum operating conditions. Optimal CaO sorption corresponding to 82% CH4 conversion and 85% H2 purity is found at 900 K, 3 bar, 3.5 kgm−2s−1 and S/C of 3.0. In contrast, lithium zirconate (LZC) and hydrotalcite (HTC) sorbents exhibited best sorptions under the operating conditions of 773 K, 5 bar and S/C of 3 with CH4 conversion of 91.3% and 55.2%, and H2... 

    On the functionality of the polypyrrole nanostructures for surface modification of Co-free Li-rich layered oxide cathode applied in lithium-ion batteries

    , Article Journal of Electroanalytical Chemistry ; Volume 914 , 2022 ; 15726657 (ISSN) Vahdatkhah, P ; Khatiboleslam Sadrnezhaad, S ; Voznyy, O ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Co-free Li-rich manganese nickel oxide (LMNO) materials are emerging as an up-and-coming candidate for high-energy–density cathodes. However, they suffer from severe cycling capacity fading and poor performance rates. Herein, the surface functionalization of an LMNO cathode is designed by polypyrrole (PPy) nanostructure coating. We found that PPy nanoparticles@LMNO cathode exhibits high-capacity retention and enhanced rate capabilities, delivering a discharge capacity as high as 191 mAh g−1, with capacity retention of 96%, after ∼ 200 cycles at a current density of 20 mA g−1. The results indicate that the intercalation and doping pseudocapacitance can be varied depending on the synthesis... 

    Characterization of Lithium Presence in Brine and Extraction of Lithium from Brine Resources of Iran

    , M.Sc. Thesis Sharif University of Technology Moazeni Afarani, Maryam (Author) ; Askari, Masoud (Supervisor) ; Nusheh, Mohammad (Co-Advisor)
    Abstract
    One of the basic resources for lithium extraction is brine which is very abundance in Iran. It is important to characterize these brines and their compositions to select a suitable method for lithium recovery from them. By investigation of the local brines and determining lithium and other alkali metals composition in them, the ion exchange process using titanium dioxide ion-sieve with nanotube morphology is suggested as highly effective method for lithium extraction from Iranian brines. Due to high advantages of hydrothermal process, TiO2 nanotubes were produced by this method and the optimum parameters of hydrothermal reactions were reported. In this way, hydrogen titanate nanotubes with... 

    Design of Addatives for use in Li-ion Batteries: A Density Functional Theory Approach

    , M.Sc. Thesis Sharif University of Technology Inanlou, Samane (Author) ; Gobal, Fereydoon (Supervisor)
    Abstract
    In Li batteries, lithium ions are exchanged between two electrodes, along with the accompaning electron transfer to maintain riability good ionic conductivities and electrolytes stability are achived through additives to the electrolyte. Such matrial should possess good anions acceptability. This work investigates the potential of aza-ethers in this regard. The softness criteris is basically employed. DFT calculation for selected molecules of different size, substituents and interacting atoms are used to correlate softness, electrophilicity, Fukui no, etc to the usefulness of the corresponding matrials  

    Lithium Extraction from Urmia Lake Brines

    , M.Sc. Thesis Sharif University of Technology Soleimani Khalaji, Milad (Author) ; Askari, Masoud (Supervisor) ; Alamolhoda, Ali Asghar (Supervisor)
    Abstract
    Using a Lithium Selective Ion Sieve is one of the most advanced processes for Extraction of lithium from Brines. The ability to Extract Lithium selectively from brines make the ion sieve suitable for brines with low concentrations of lithium. In this study brines samples from Urmia Lake with lithium concentration of 30 ppm was used. The main objective of this study was to find the best condition for lithium adsorption and desorption using the synthesized titanium dioxide ion sieve. In this study lithium selective ion sieve with nanotube morphology and Diameter of 81 nm was synthesized. Study on pH of synthesized solution containing lithium ions was carried out and pH=12 was concluded the... 

    Lithium Isotopes Separation by Electrolysis Amalgam by a Continuous Method

    , M.Sc. Thesis Sharif University of Technology Kowsari, Mohammad Reza (Author) ; Outokesh, Mohammad (Supervisor) ; Ahmadi, Javad (Co-Advisor)
    Abstract
    Lithium has 9 isotopes which two isotopes are stable and remaining isotopes are unstable and have half-life. Lithium stable isotopes include 6Li and 7Li that their abundance is 7.53% and 92.47% respectively. Importance of lighter lithium isotope appears for its small cross section against thermal neutron and producing fusion reactors fuel in nuclear industries. Thermal neutron absorption cross section for 6Li and 7Li are 950 barn and 37 mbarn respectively. Interesting of these isotopes in nuclear industry is due to the large difference in the absorption cross section.6Li compounds implied for tritium producing in coat of nuclear fusion reactor with DT fuel. Following tritium is used in... 

    Selective Adsorption of Li+Ion on Lithium Adsorbents

    , M.Sc. Thesis Sharif University of Technology Hajipour, Hengameh (Author) ; Askari, Masoud (Supervisor)
    Abstract
    Interest in lithium sources has been increasing because of wide applications of the metal in high-energystorage lithium batteries and its compounds in otherfields.Lithium appears in lake, brines and several minerals such as spodumene, petallite, and lepidolite. Several methods such as ion exchange (adsorption), solvent extraction, and coprecipitation have been investigated for the extraction of lithium from seawater, brine, and geothermal water. The adsorption method is suitable for recovery of lithium from seawater because certain inorganicion-exchange materials show extremely high selectivity for lithium ions only.The objective of this study is to evaluate the applicability of nano... 

    Study of Lithium-transition Metals-orthosilicates as Cathode Materials for Li-ion Batteries

    , Ph.D. Dissertation Sharif University of Technology Kalantarian, Mohammad Mahdi (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    In this study, orthosilicate materials with chemical formula of Li2MSiO4 (M one or two transition metal/metals) were investigated experimentally and theoretically as cathode material of Li-ion batteries. The most important material in this category i.e. Li2FeSiO4 was synthesized by three methods including nitrate-based sol-gel, oxalate-based solid state reaction and oxide-based solid state reaction. Based on XRD and SEM evaluations, grain size of synthesized powders was estimated to be between 15 to 100 nanometers. Of these three methods, oxide-based solid state reaction was employed in this study for the first time. This syntheses method is very important due to the significant lower... 

    Characterization of LiCoO2 nanopowders produced by sol-gel processing

    , Article Journal of Nanomaterials ; Volume 2010 , 2010 ; 16874110 (ISSN) Asgari, S ; Soltanmohammad, S ; Sharif University of Technology
    2010
    Abstract
    LiCoO2 nanopowders, one of the most important cathode materials for lithium-ion batteries, were synthesized via a modified sol-gel process assisted with triethanolamine (TEA) as a complexing agent. The influence of three different chelating agents including acrylic acid, citric acid, and oxalic acid on the size and morphology of particles was investigated. Structure and morphology of the synthesized powders were characterized by thermogravimetric/ differential thermal analyses (TG/DTA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Results indicate that the powder processed with TEA and calcinated at 800 °C had an excellent hexagonal ordering of α-NaFeO2 -type (space... 

    Highly regioselective, base-catalyzed, biginelli-type reaction of aldehyde, phenylacetone and urea/thiourea kinetic vs. thermodynamic control

    , Article Journal of Sulfur Chemistry ; 2017 , Pages 1-13 ; 17415993 (ISSN) Nematpour, M ; Rezaee, E ; Jahani, M ; Tabatabai, S. A ; Sharif University of Technology
    Abstract
    An efficient one-pot regioselective synthesis of various novel 3,4-dihydropyrimidin-2(1H)-one (DHPMs) via a three-component Biginelli-type condensation of aldehyde, phenylacetone and urea/thiourea under two different based-catalyzed conditions is described. In kinetic control path, lithium N, N-diisopropylamide (LDA-20 mol % generated in situ from n-BuLi and diisopropylamine) was used as the base, in tetrahydroforane (THF) as the solvent at 0°C. Thermodynamic control path was run with NaH as the base, in EtOH as the solvent under reflux status. The simple procedure, mild base-catalytic reaction conditions, no column chromatography and good to high yields are important features of this... 

    SnO2@a-Si core-shell nanowires on free-standing CNT paper as a thin and flexible Li-ion battery anode with high areal capacity

    , Article Nanotechnology ; Volume 28, Issue 25 , 2017 ; 09574484 (ISSN) Abnavi, A ; Sadati Faramarzi, M ; Abdollahi, A ; Ramzani, R ; Ghasemi, S ; Sanaee, Z ; Sharif University of Technology
    Institute of Physics Publishing  2017
    Abstract
    Here, we report 3D hierarchical SnO2 nanowire (NW) core-amorphous silicon shell on free-standing carbon nanotube paper (SnO2@a-Si/CNT paper) as an effective anode for flexible lithium-ion battery (LIB) application. This binder-free electrode exhibits a high initial discharge capacity of 3020 mAh g-1 with a large reversible charge capacity of 1250 mAh g-1 at a current density of 250 mA g-1. Compared to other SnO2 NW or its core-shell nanostructured anodes, the fabricated SnO2@a-Si/CNT structure demonstrates an outstanding performance with high mass loading (∼5.9 mg cm-2), high areal capacity (∼5.2 mAh cm-2), and large volumetric capacity (∼1750 mAh cm-3) after 25 cycles. Due to the...