Loading...
Search for: reconfigurable-hardware
0.005 seconds

    Stress-aware routing to mitigate aging effects in SRAM-based FPGAs

    , Article 26th International Conference on Field-Programmable Logic and Applications, FPL 2016, 29 August 2016 through 2 September 2016 ; 2016 ; 9782839918442 (ISBN) Khaleghi, B ; Omidi, B ; Amrouch, H ; Henkel, J ; Asadi, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    Continuous shrinking of transistor size to provide high computation capability along with low power consumption has been accompanied by reliability degradations due to e.g., aging phenomenon. In this regard, with huge number of configuration bits, Field-Programmable Gate Arrays (FPGAs) are more susceptible to aging since aging not only degrades the performance, it may additionally result in corrupting the configuration cells and thus causing permanent circuit malfunctioning. While several works have investigated the aging effects in Look-Up Tables (LUTs), the routing fabric of these devices is seldom studied - even though it contributes to the majority of FPGAs' resources and configuration... 

    A fault tolerant parallelism approach for implementing High-throughput pipelined advanced encryption standard

    , Article Journal of Circuits, Systems and Computers ; Volume 25, Issue 9 , 2016 ; 02181266 (ISSN) Mardani Kamali, H ; Hessabi, S ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2016
    Abstract
    Advanced Encryption Standard (AES) is the most popular symmetric encryption method, which encrypts streams of data by using symmetric keys. The current preferable AES architectures employ effective methods to achieve two important goals: protection against power analysis attacks and high-throughput. Based on a different architectural point of view, we implement a particular parallel architecture for the latter goal, which is capable of implementing a more efficient pipelining in field-programmable gate array (FPGA). In this regard, all intermediate registers which have a role for unrolling the main loop will be removed. Also, instead of unrolling the main loop of AES algorithm, we implement... 

    A low-latency QRD-RLS architecture for high-throughput adaptive applications

    , Article IEEE Transactions on Circuits and Systems II: Express Briefs ; Volume 63, Issue 7 , 2016 , Pages 708-712 ; 15497747 (ISSN) Alizadeh, M. S ; Bagherzadeh, J ; Sharifkhani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    A novel architecture for QR decomposition-based recursive least squares is presented. It offers low latency for applications where the channel equalization and adaptive filtering are mandatory. This approach reduces the computations by rewriting the equations in a manner that lets intense hardware resource sharing by reusing similar values in different computations. Moreover, precision range conversion allows for combining complex operations such as root square and division with minimum effect on the overall quantization error. Hence, an efficient lookup table-based solution has highly enhanced the performance of the design by 2.7 times with respect to the previous works  

    Coupled electromechanical analysis of MEMS-based energy harvesters integrated with nonlinear power extraction circuits

    , Article Microsystem Technologies ; 2016 , Pages 1-18 ; 09467076 (ISSN) Pasharavesh, A ; Ahmadian, M. T ; Zohoor, H ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    Application of piezoelectric materials in vibration energy harvesters is expanding rapidly, especially in MEMS-based devices, due to their uncomplicated fabrication processes and reasonable power generation potential. In addition to standard power extraction methods, nonlinear switched techniques with capability of generated power enhancement, are previously developed and extensively applied in energy harvesting using piezoelectric materials. In this article, vibratory behavior of bimorph resonant harvesters coupled to nonlinear circuits of energy harvesting including standard and switched techniques is investigated. An analytical approach employing some perturbation technique, is utilized... 

    An efficient hybrid-switched network-on-chip for chip multiprocessors

    , Article IEEE Transactions on Computers ; Volume 65, Issue 5 , 2016 , Pages 1656-1662 ; 00189340 (ISSN) Lotfi Kamran, P ; Modarressi, M ; Sarbazi Azad, H ; Sharif University of Technology
    IEEE Computer Society 
    Abstract
    Chip multiprocessors (CMPs) require a low-latency interconnect fabric network-on-chip (NoC) to minimize processor stall time on instruction and data accesses that are serviced by the last-level cache (LLC). While packet-switched mesh interconnects sacrifice performance of many-core processors due to NoC-induced delays, existing circuit-switched interconnects do not offer lower network delays as they cannot hide the time it takes to set up a circuit. To address this problem, this work introduces CIMA - a hybrid circuit-switched and packet-switched mesh-based interconnection network that affords low LLC access delays at a small area cost. CIMA uses virtual cut-through (VCT) switching for short... 

    Smart mesoporous silica nanoparticles for controlled-release drug delivery

    , Article Nanotechnology Reviews ; Volume 5, Issue 2 , 2016 , Pages 195-207 ; 21919089 (ISSN) Karimi, M ; Mirshekari, H ; Aliakbari, M ; Sahandi Zangabad, P ; Hamblin, M. R ; Sharif University of Technology
    Walter de Gruyter GmbH  2016
    Abstract
    Stimuli-responsive controlled-release nanocarriers are promising vehicles for delivery of bioactive molecules that can minimize side effects and maximize efficiency. The release of the drug occurs when the nanocarrier is triggered by an internal or external stimulus. Mesoporous silica nanoparticles (MSN) can have drugs and bioactive cargos loaded into the high-capacity pores, and their release can be triggered by activation of a variety of stimulus-responsive molecular "gatekeepers" or "nanovalves." In this mini-review, we discuss the basic concepts of MSN in targeted drug-release systems and cover different stimulus-responsive gatekeepers. Internal stimuli include redox, enzymes, and pH,... 

    Wireless interfacing to cortical neural recording implants using 4-FSK modulation scheme

    , Article IEEE International Conference on Electronics, Circuits, and Systems, 6 December 2015 through 9 December 2015 ; Volume 2016 March , 2016 , Pages 221-224 ; 9781509002467 (ISBN) Eslampanah Sendi, M. S ; Judy, M ; Molaei, H ; Sodagar, A. M ; Sharifkhani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    This paper used a 4-level frequency shift keying (4-FSK) modulation scheme to enhance the density of wireless data transfer from implantable biomedical microsystems to the outside world. Modeling and simulation of the wireless channel for 4-FSK modulation in the case of a neural recording implant has been done. To realize the 4-FSK scheme, the modulator and demodulator circuits are proposed, designed and simulated in a 0.18-μm CMOS process, and in the 174-216 MHz frequency band at a data rate of 13.5 Mbps. Operated using a 1.8 V supply voltage, the modulator circuit consumes a power of 7.8 μW  

    Water hammer in a horizontal rectangular conduit containing air-water two-phase slug flow

    , Article Journal of Hydraulic Engineering ; Volume 142, Issue 3 , 2016 ; 07339429 (ISSN) Eyhavand Koohzadi, A ; Borghei, S. M ; Kabiri Samani, A ; Sharif University of Technology
    American Society of Civil Engineers (ASCE)  2016
    Abstract
    The study of water hammer in air-water, two-phase flows in hydraulic structures such as pressurized pipelines and tunnels, siphons, culverts, and junctions is of great importance for design purposes. Water hammer if combined with a periodic slug flow would lead to severe periodic transient pressure fluctuations inside the conduit. Laboratory experiments have been conducted to investigate waterhammer pressure inside a horizontal rectangular conduit carrying a two-phase, air-water slug flow. Tests were performed in an experimental apparatus comprising a 6.8-m-long transparent pipeline 0.06 m wide and 0.1 m high. By rapidly closing a control gate at the end of the conduit, propagating pressure... 

    Investigation of readout cell configuration and parameters on functionality and stability of bi-directional RSFQ TFF

    , Article IEEE Transactions on Applied Superconductivity ; Volume 26, Issue 3 , 2016 ; 10518223 (ISSN) Jabbari, T ; Zandi, H ; Foroughi, F ; Bozbey, A ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    Considering the two main categories of rapid single flux quantum gates with destructive and nondestructive readout process, we have investigated the effects of readout cell topology and involved critical parameters on the proper functionality and stability of the states of the newly developed bidirectional T flip-flops (TFFs). It is observed that instabilities and fluctuations in the state of the gate (memory of TFF) after each transition determine the minimum time intervals between the clock pulses set by the ac bias current, further limiting the ultimate operation frequency of the circuits. The absolute values of the current levels of the junctions at each state, which play an important... 

    Coupled electromechanical analysis of MEMS-based energy harvesters integrated with nonlinear power extraction circuits

    , Article Microsystem Technologies ; Volume 23, Issue 7 , 2017 , Pages 2403-2420 ; 09467076 (ISSN) Pasharavesh, A ; Ahmadian, M. T ; Zohoor, H ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    Application of piezoelectric materials in vibration energy harvesters is expanding rapidly, especially in MEMS-based devices, due to their uncomplicated fabrication processes and reasonable power generation potential. In addition to standard power extraction methods, nonlinear switched techniques with capability of generated power enhancement, are previously developed and extensively applied in energy harvesting using piezoelectric materials. In this article, vibratory behavior of bimorph resonant harvesters coupled to nonlinear circuits of energy harvesting including standard and switched techniques is investigated. An analytical approach employing some perturbation technique, is utilized... 

    Accelerating Numerical Solution of Steady and Unsteady Equations Using FPGA

    , Ph.D. Dissertation Sharif University of Technology Zandsalimy, Mohammad (Author) ; Ebrahimi, Abbas (Supervisor)
    Abstract
    Nowadays one of the main challenges facing fluid dynamics simulations is the long duration of numerical calculations. The goal of this research is to use FPGAs (Field Programmable Gate Arrays) to accelerate fluid dynamics solutions. First, the ability of FPGAs in mathematical operations on floating point numbers is studied. Then, various fluid dynamics problems are implemented on the FPGA hardware, and each one is solved separately. Unsteady 1D Couette problem, 2D potential flow (Laplace equation), incompressible viscous fluid flow over a backward facing step, and compressible inviscid flow over a bump are some of the problems in question. FPGA is an integrated circuit containing a number of... 

    FPGA-based reconfigurable control for fault-tolerant back-to-back converter without redundancy

    , Article IEEE Transactions on Industrial Electronics ; Volume 60, Issue 8 , May , 2013 , Pages 3360-3371 ; 02780046 (ISSN) Shahbazi, M ; Poure, P ; Saadate, S ; Zolghadri, M. R ; Sharif University of Technology
    2013
    Abstract
    In this paper, an FPGA-based fault-tolerant back-to-back converter without redundancy is studied. Before fault occurrence, the fault-tolerant converter operates like a conventional back-to-back six-leg converter, and after the fault, it becomes a five-leg converter. Design, implementation, and experimental verification of an FPGA-based reconfigurable control strategy for this converter are discussed. This reconfigurable control strategy allows the continuous operation of the converter with minimum affection from a fault in one of the semiconductor switches. A very fast detection scheme is used to detect and locate the fault. Implementation of the fault detection and of the fully digital... 

    Fault-tolerant five-leg converter topology with FPGA-Based reconfigurable control

    , Article IEEE Transactions on Industrial Electronics ; Volume 60, Issue 6 , 2013 , Pages 2284-2294 ; 02780046 (ISSN) Shahbazi, M ; Poure, P ; Saadate, S ; Zolghadri, M. R ; Sharif University of Technology
    2013
    Abstract
    Fast fault detection and reconfiguration of power converters is necessary in electrical drives to prevent further damage and to make the continuity of service possible. On the other hand, component minimized converters may provide the benefits of higher reliability and less volume and cost. In this paper, a new fault-tolerant converter topology is studied. This converter has five legs before the fault occurrence, and after fault detection the converter continues to function with four legs. A very fast fault detection and reconfiguration scheme is presented and studied. Simulations and experimental tests are performed to evaluate the structure requirements, the digital reconfigurable... 

    A partial task replication algorithm for fault-tolerant FPGA-based soft-multiprocessors

    , Article CSI Symposium on Real-Time and Embedded Systems and Technologies, RTEST 2015, 7 October 2015 through 8 October 2015 ; October , 2015 , Page(s): 1 - 7 ; 9781467380478 (ISBN) Zabihi, M ; Farbeh, H ; Miremadi, S. G ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    FPGA-based multiprocessors, referred as softmultiprocessors, have an increasing use in embedded systems due to appealing SRAM features. More than 95% of such FPGAs are occupied by SRAM cells constructing the configuration bits. These SRAM cells are highly vulnerable to soft errors threatening the reliability of the system. This paper proposes a fault-tolerant method to detect and correct errors in the configuration bits. The main of this method is to analyze the scheduled task graph and select a subset of tasks to be replicated in multiple processors based on the utilization of the processors in different execution phases. To this end, 1) errors are detected by re-executing a subset of tasks... 

    Collision-free path planning of a novel reconfigurable mobile parallel mechanism

    , Article International Conference on Robotics and Mechatronics, ICROM 2015, 7 October 2015 through 9 October 2015 ; 2015 , Pages 389-394 ; 9781467372343 (ISBN) Nozari Porshokouhi, P ; Kazemi, H ; Masouleh, M. T ; Novin, R. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    This paper initially deals with the design of a new customized reconfigurable mobile parallel mechanism. This mechanism is called "Taar Reconfigurable ParaMobile (TRPM)", consisting of three mobile robots as the main actuators. Then, the kinematics and path planning for this mechanism are represented. The newly proposed mechanism is expected to circumvent some shortcomings of inspection operation in unknown environments with unexpected changes in their workspace, e.g., in a water pipe with non-uniform section area. In this paper, "Artificial Potential Field (APF)" has been assumed to be the path planning algorithm and its resulting attractive and repulsive forces are only applied to the... 

    Decentralized control of reconfigurable robots using joint-torque sensing

    , Article International Conference on Robotics and Mechatronics, ICROM 2015, 7 October 2015 through 9 October 2015 ; 2015 , Pages 581-585 ; 9781467372343 (ISBN) Yazdi Almodaresi, S. M ; Sharif University of Technology
    Abstract
    In this paper, a decentralized controller for trajectory tracking of modular and reconfigurable robot manipulators is developed. The proposed control scheme uses joint-torque sensory feedback; also sliding mode control is employed to make both position and velocity tracking errors of robot manipulators globally converging to zero. Proposed scheme also guarantees that all signals in closed-loop systems will be bounded. In contrast to some of prior works in this scheme, each controller uses a smooth law to achieve its purposes. In this method, each controller uses only local information for producing control law hence separated controller can be used to control each module of manipulator and... 

    Designing the FPGA-based system for Triangle Phase space Mapping (TPSM) of heart rate variability (HRV) signal

    , Article 2015 38th International Conference on Telecommunications and Signal Processing, TSP 2015, 9 July 2015 through 11 July 2015 ; July , 2015 , Page(s): 1 - 4 ; 9781479984985 (ISBN) Rezaei, S ; Moharreri, S ; Ghorshi, A ; Molnar K ; Herencsar N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    There has been an increasing interest in telemonitoring thanks to the availability of new technologies for data transmission and processing with better performances and lower costs. In this paper, we try to develop and implement the HRV signal processing into a Field Programmable Gate Array (FPGA). The hardware implementing algorithm was developed in Verilog Hardware Description Language (HDL). In designed hardware, after defining the number of samples in the input, we extract and analyses the Triangular Phase Space Mapping (TPSM), a novel method for representation of heart rate. The performance of the system was tested using MATLAB and validated based on the input signals  

    An efficient DVS scheme for on-chip networks using reconfigurable Virtual Channel allocators

    , Article Proceedings of the International Symposium on Low Power Electronics and Design, 22 July 2015 through 24 July 2015 ; Volume 2015-September , July , 2015 , Pages 249-254 ; 15334678 (ISSN) ; 9781467380096 (ISBN) Sadrosadati, M ; Mirhosseini, A ; Aghilinasab, H ; Sarbazi Azad, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Network-on-Chip (NoC) is a key element in the total power consumption of a chip multiprocessor. Dynamic Voltage Scaling is a promising method for power saving in NoCs since it contributes to reduction in both static and dynamic power consumptions. In this paper, we propose a novel scheme to reduce on-chip network power consumption when the number of Virtual Channels (VCs) with active allocation requests per cycle is less than the number of total VCs. In our method, we introduce a reconfigurable arbitration logic which can be configured to have multiple latencies and hence, multiple slack times. The increased slack times are then used to reduce the supply voltage of the routers in order to... 

    DRVS: Power-efficient reliability management through Dynamic Redundancy and Voltage Scaling under variations

    , Article 20th IEEE/ACM International Symposium on Low Power Electronics and Design, ISLPED 2015, 22 July 2015 through 24 July 2015 ; Volume 2015 , September , 2015 , Pages 225-230 ; 15334678 (ISSN) ; 9781467380096 (ISBN) Salehi, M ; Tavana, M. K ; Rehman, S ; Kriebel, F ; Shafique, M ; Ejlali, A ; Henkel, J ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Many-core processors facilitate coarse-grained reliability by exploiting available cores for redundant multithreading. However, ensuring high reliability with reduced power consumption necessitates joint considerations of variations in vulnerability, performance and power properties of software as well as the underlying hardware. In this paper, we propose a power-efficient reliability management system for many-core processors. It exploits various basic redundancy techniques (like, dual and triple modular redundancy) operating in different voltage-frequency levels, each offering distinct reliability, performance and power properties. Our system performs Dynamic Redundancy and Voltage Scaling... 

    S2AP: An efficient numerical-based crosstalk avoidance code for reliable data transfer of NoCs

    , Article 10th International Symposium on Reconfigurable and Communication-centric Systems-on-Chip,, 29 June 2015 through 1 July 2015 ; June , 2015 , Page(s): 1 - 6 ; 9781467379427 (ISBN) Shirmohammadi, Z ; Miremadi, S. G ; Janssen K ; DFG ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Data traversal in Network-on-Chips (NoCs) is threated by crosstalk fault seriously. Crosstalk fault leads to mutual influence between adjacent wires of NoCs and as a result endangers the reliability of data in NoCs. Crosstalk fault is strongly dependent on the transition patterns appearing on the wires of NoCs. Among these transitions, Triplet Opposite Directions (TODs) impose the worse crosstalk effects to the wires of NoCs. This paper proposes an efficient numerical-based coding mechanism called Summation-based-Subtracted-Added-Penultimate (S2AP) which alleviates crosstalk faults. This is done by completely removing TODs which are the main source of crosstalk faults in the channels of...