Loading...
Search for: bone-scaffold
0.006 seconds

    Manufacturing and Characterization of Bone Scaffold Based on TCP

    , M.Sc. Thesis Sharif University of Technology Gorgin Karaji, Zahra (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Bone scaffolds are combinations of several materials, for achieving suitable properties and usage for replacing with defected bone. In this study, TCP/Agarose scaffolds are fabricated by two different approaches. The first one is using polymer sponge and gel casting technique and the other one is using foaming agent in order to obtain scaffolds with same porosity. The results show that in spite of same structure and porosity, scaffolds have different mechanical properties due to their different morphologies. Compressive strength of the scaffolds which were fabricated using polymer sponge method is 2.25MPa and elastic modulus is 56.8MPa. After coating with Agarose, compressive strength... 

    Fabrication and Characterization of Thermoplastic Starch Based Nanocomposite for Bone Scaffold

    , M.Sc. Thesis Sharif University of Technology Mahdieh, Zahra (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    This project aimed to fabricate the bone scaffolds with applying thermoplastic starch-based nano-biocomposites. The starting materials for this scaffold are as follows: thermoplastic starch, ethylene vinyl alcohol as the polymer matrix and nanoforsterite as the ceramic reinforcing phase. Furthermore, vitamin E was used as antioxidant for preserving starch against thermo-mechanical degradations. Likewise, 3D pore structure was developed using azo-dicarbonamide and water in injection moulding process. With blending thermoplastic starch and ethylene vinyl alcohol, some thermoplastic starch’s properties including degradation rate and water absorption were modified. In addition, having... 

    Fabrication and Characterization of Nanocomposite Bone Scaffold with Gradient Structure Based on Thermoplastic Starch

    , M.Sc. Thesis Sharif University of Technology Mirab, Fereshteh (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Tissue regeneration by bio-compatible/degradable scaffolds is one of the widely used approaches in the field of tissue engineering. In this study, a thermoplastic starch based nanocomposite scaffold with gradient structure was fabricated by unidirectional freeze drying method. To increase the stability of the scaffold in the aqueous media, PVA was added to starch solution. Then, the PVA and starch molecules were cross-linked by adding citric acid to the mixture. On the one hand, to improve the mechanical properties of the scaffold, and control its bio-degradability on the other, cellulose nano-fibers were employed. Also, the bioactivity of the scaffold was induced by using hydroxyapatite... 

    Design and Fabrication of Biodegradable Polymeric Scaffold with nano-Bioglass for Osteoblast cell Growth

    , M.Sc. Thesis Sharif University of Technology Razaghzadeh Bidgoli, Mina (Author) ; Vossoughi, Manouchehr (Supervisor) ; Alemzadeh, Iran (Supervisor) ; Tamjid Shabesteri, Elnaz (Co-Advisor)
    Abstract
    Treatment of critical-size bone defects caused by sport injuries, accidents, trauma, infection, and osteoporosis remains a major clinical challenge. In order to repair or regenerate large bone defects, bioactive three-dimensional scaffolds play a key role due to their multilevel porous structure, high surface area, enhanced mass transport and diffusion. Many studies reported that macropore diameters greater than 500 µm can lead to vascularized bone tissue. In this study, a hierarchically porous composite scaffold was prepared. Hierarchically porous silk fibroin- bioactive glass composite and fibroin scaffold were fabricated with controlled architecture and interconnected structure with... 

    Evaluation of Mechanical and Structural Properties of Titanium Bone Scaffolds

    , M.Sc. Thesis Sharif University of Technology Naddaf Dezfuli, Sina (Author) ; Sadrnezhad, Khatiboleslam (Supervisor) ; Shokrgozaar, Mohammad Ali (Co-Supervisor)
    Abstract
    Interconnected–pore titanium scaffolds were fabricated by sintering of compressed mixture of TiH1.924 and urea or NaCl. Urea was removed by evaporation during sintering and NaCl was removed with water. TiH1.924 was used to enhance gas evolution for perpetuation of foam formation. Morphological studies of the spacer-removed scaffolds showed that the spacer shapes were replicated to the pores. Minimization of stress concentration at walls of the pores was, hence, helped by utilization of the spacers with spherical particles. The scaffolds having relative densities of 0.34 to 0.65 consisted pores of 200 to 600 μm diameter, compression strengths of 51 to 260 MPa, Young’s modulus of 6.3 to 22.66... 

    Preparation and Characterization of Hydroxyapatite Nanostructures Using Natural Resources for Bone Scaffold Applications

    , M.Sc. Thesis Sharif University of Technology Gheysari, Hengameh (Author) ; Simchi, Abdolreza (Supervisor) ; Askari, Masoud (Supervisor)
    Abstract
    This investigation presents synthesis and characterization of pure and monophasic hydroxyapatite (Ca10(PO4)6(OH)2; HA) Nanostructures prepared by coral and oyster shell powders heated at 800 oC for 8 h as precursor via precipitation method. The morphology of HA nanostructures was controlled in the presence of various surfactants such as SDS, CTAB and PVP. The HA Nanorods synthesized by SDS were applied to fabricate bone scaffolds. Particle sizes of the HA Nanoparticles were about 20-30 nm. Pours three-dimensional HA/Ge/CMC scaffolds cross-linked by citric and oxalic acids were synthesized. In order to increase the pore size of the scaffolds, NaCl with medium (180-250 µm) and large (420-500... 

    , M.Sc. Thesis Sharif University of Technology (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    In the preceding years, hydroxyapatite (HA)-based coatings and scaffolds have been known as the best biomaterials for dental and orthopedics applications. Biocompatible and bioactive hydroxyapatite-based Coatings on metallic implants is one of the best methods for reaching both suitable mechanical properties and appropriate bioactivity, leading to better osseointegration and osteoblast proliferation. The ultimate goal of this project is characterization as well as mechanical and electrochemical behavior investigation of Hydroxyapatite- Chitosan nanocomposite coating by electrophoretic deposition (EPD) method on Plasma Electrolyte Oxidation (PEO) treated titanium substrates and Magnesium (Mg)... 

    Fabrication of Allograft-derived Scaffold by 3D Bioprinting for Craniofacial Defect

    , M.Sc. Thesis Sharif University of Technology Ashrafnia, Arezoo (Author) ; Mashayekhan, Shohreh (Supervisor)
    Abstract
    Craniofacial bone defects without scarring are a major clinical issue. These critical defects, which can be caused by infection or fracture, cannot be repaired without surgery. The main goal of skull repair is to protect vulnerable structures such as the brain, or it can be due to the improvement of jaw function and beauty. Tissue engineering can offer a new generation solution. The purpose of this study was to construct and characterise a degradable polymer/ bioceramic composite scaffold with allograft powder used in the craniofacial bone. The complexities of the extracellular matrix of humans can be simulated using 3D bioprinting.In this study, tricalcium silicate (TCS) was first... 

    Preparation a Bio-Composite Scaffold Containing Hydroxyapatite/Silver Faunctionalized Graphene Oxide/Chitosan for Bone Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Askarinya, Amir Hossein (Author) ; Nemati, Ali (Supervisor) ; Malek Khachatourian, Adrineh (Supervisor)
    Abstract
    Bone scaffolds are used to regenerate bone tissue and accelerate bone healing, for this purpose, an attempt was made to prepare biocompatible, biodegradable, low toxicity and non-allergenic scaffolds to help increase osteogenesis and improve bone infections. A porous multi-component composite of chitosan, hydroxyapatite, graphene oxide functionalized with silver was made to make the desired scaffolds. At first, graphene oxide was functionalized by silver ions using silver nitrate. The structure of silver graphene oxide nanocomposite was confirmed by scanning electron microscope (SEM), Fourier infrared spectroscopy (FT-IR), and ultraviolet (UV-Visible) spectroscopy. In the next step, a... 

    Synthesis, Characterization and Application of Porous Bioactive Glasses-Based Nanostructures in Bone Tissue Engineering

    , Ph.D. Dissertation Sharif University of Technology Aldhaher, Abdullah (Author) ; Bagherzadeh, Mojtaba (Supervisor) ; Baheiraei, Nafiseh (Co-Supervisor)
    Abstract
    In the upcoming research, with the aim of bone tissue engineering and achieving a new structure, a scaffold based on polyhema (PHEMA) and gelatin (Gel), which are biocompatible polymers for bone tissue, was made and evaluated. Also, in order to improve the bioactivity and mechanical properties, bioactive glass alone (BG45S5) or together with strontium (BG-Sr) was used in the scaffold structure. and chemical by conducting FTIR, XRD, SEM, mechanical strength, bioactivity measurement, contact angle, water absorption and degradation tests. Biological investigations were done using mesenchymal stem cells derived from human bone marrow and with the help of MTT evaluations and SEM photography. The... 

    Synthesis of Hydroxyapatite Nanoparticles through Sol-Gel Method and Fabrication of Chitosan/Hydroxyapatite Scaffold for Bone Replacement Tissue

    , M.Sc. Thesis Sharif University of Technology Behboodi, Panteha (Author) ; Nemati, Ali (Supervisor) ; Faghihi Sani, Mohammad Ali (Co-Supervisor)
    Abstract
    Hydroxyapatite is the most substantial inorganic component of bone tissue which displays great biocompability and bioactivity. Nevertheless, its mechanical properties is not appropriate for a bone substitiues. Therefore, it is used to improve the mechanical properties of polymer matrix composite scaffolds. In the present work chitosan as a polymeric matrix was employed to fabricate hydroxyapatite- chitosan biocomposite scaffolds. Sol-Gel method was employed to synthesize hydroxyapatite nano particles. Porous scaffolds were fabricated via freeze-drying by introducing two different cross linkers, Glutaraldehyde and Sodium Tripolyphosphate. Mechanical (compressive strength), biocampability and... 

    Three Dimentional Printing of Highly Porous Metamaterials Based on Polyurethane/Tricalcium Phosphate Composite for Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Hosseini, Danial (Author) ; Simchi, AbdolReza (Supervisor) ; Tavakoli, Rouhollah (Supervisor)
    Abstract
    In the last decade, mechanical metamaterials have attracted more attention due to new design principles that combine the concept of hierarchical architecture with material size effects at the micro or nano scale. This strategy shows extraordinary mechanical performance that we use in unknown parts of the material property space, including strength-to-density ratios, extraordinary flexibility, and the ability to absorb energy with brittle components. The aim of this research was to print metamaterial scaffolds from a combination of biocompatible and bioactive to be used as scaffolds in bone tissue engineering. In addition to the biological properties appropriate to the host tissue, the... 

    The effect of pore morphology and agarose coating on mechanical properties of tricalcium phosphate scaffolds

    , Article International Journal of Applied Ceramic Technology ; Volume 19, Issue 5 , 2022 , Pages 2713-2722 ; 1546542X (ISSN) Gorgin Karaji, Z ; Bagheri, R ; Amirkhani, S ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Three-dimensional biocompatible porous structures can be fabricated using different methods. However, the biological and mechanical behaviors of scaffolds are the center of focus in bone tissue engineering. In this study, tricalcium phosphate scaffolds with similar porosity contents but different pore morphologies were fabricated using two different techniques, namely, the replica method and the pore-forming agent method. The samples fabricated using the pore-forming agent showed more than two times higher compressive and bending strengths and more than three times higher compressive moduli. Furthermore, a thin layer of agarose coating improved the compressive and bending strength of both... 

    In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process

    , Article Materials Science and Engineering C ; Volume 33, Issue 1 , 2013 , Pages 390-396 ; 09284931 (ISSN) Rezaei, A ; Mohammadi, M. R ; Sharif University of Technology
    2013
    Abstract
    Hydroxyapatite (HA) is the most substantial mineral constituent of a bone which has been extensively used in medicine as implantable materials, owing to its good biocompatibility, bioactivity high osteoconductive, and/or osteoinductive properties. Nevertheless, its mechanical property is not utmost appropriate for a bone substitution. Therefore, a composite consist of HA and a biodegradable polymer is usually prepared to generate an apt bone scaffold. In the present work polycaprolactone (PCL), a newly remarkable biocompatible and biodegradable polymer, was employed as a matrix and hydroxyapatite nanoparticles were used as a reinforcement element of the composite. HA/PCL nanocomposites were...