Loading...

Design of pH-responsive nanoparticles of terpolymer of poly(methacrylic acid), polysorbate 80 and starch for delivery of doxorubicin

Shalviri, A ; Sharif University of Technology | 2013

3387 Viewed
  1. Type of Document: Article
  2. DOI: 10.1016/j.colsurfb.2012.07.015
  3. Publisher: 2013
  4. Abstract:
  5. This work focused on the design of new pH-responsive nanoparticles for controlled delivery of anticancer drug doxorubicin (Dox). Nanoparticles of poly(methacrylic acid)-polysorbate 80-grafted starch (PMAA-PS 80-g-St) were synthesized by using a one-pot method that enabled simultaneous grafting of PMAA and PS 80 onto starch and nanoparticle formation in an aqueous medium. The particles were characterized by FTIR, 1H NMR, TEM, DLS, and potentiometric titration. Dox loading and in vitro release from the nanoparticles were investigated. The FTIR and 1H NMR confirmed the chemical composition of the graft terpolymer. The nanoparticles were relatively spherical with narrow size distribution and porous morphology. They exhibited pH-dependent swelling in a physiological pH range. The particle size and magnitude of phase transition were dependent on polymer composition and formulation parameters such as concentrations of surfactant and cross-linking agent and total monomer concentration. The nanoparticles with optimized compositions showed high loading capacity for Dox and sustained Dox release. The results suggest that the new pH-responsive terpolymer nanoparticles are useful in controlled drug delivery
  6. Keywords:
  7. Doxorubicin delivery ; Nanoparticles ; Poly(methacrylic acid)-polysorbate 80-starch ; Terpolymer ; Anticancer drug ; Aqueous medium ; Chemical compositions ; Controlled delivery ; Cross linking agents ; FTIR ; High loadings ; In-vitro ; Monomer concentration ; Nanoparticle formation ; Narrow size distributions ; One-pot method ; One-pot synthesis ; Ph-dependent swelling ; PH-responsive ; Physiological pH range ; Polymer composition ; Porous morphology ; Potentiometric titrations ; Controlled drug delivery ; Crosslinking ; Emulsions ; Grafting (chemical) ; Terpolymers ; Titration ; Voltammetry ; Synthesis (chemical) ; Nanoparticle ; Polymethacrylic acid ; Polysorbate 80 ; Surfactant ; Aqueous solution ; Chemical composition ; Controlled study ; Drug delivery system ; Drug design ; Drug release ; Drug synthesis ; Infrared spectroscopy ; Molecular interaction ; pH ; Potentiometry ; Priority journal ; Process optimization ; Proton nuclear magnetic resonance ; Transmission electron microscopy ; Antibiotics, Antineoplastic ; Carboxylic Acids ; Doxorubicin ; Excipients ; Hydrogen-Ion Concentration ; Light ; Magnetic Resonance Spectroscopy ; Microscopy, Electron, Transmission ; Particle Size ; Polymethacrylic Acids ; Polysorbates ; Scattering, Radiation ; Spectroscopy, Fourier Transform Infrared ; Starch
  8. Source: Colloids and Surfaces B: Biointerfaces ; Volume 101 , January , 2013 , Pages 405-413 ; 09277765 (ISSN)
  9. URL: http://www.sciencedirect.com/science/article/pii/S0927776512004092